scholarly journals Trend Analysis of Climatic and Hydrological Variables in the Awash River Basin, Ethiopia

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1554 ◽  
Author(s):  
Mohammed Gedefaw ◽  
Hao Wang ◽  
Denghua Yan ◽  
Xinshan Song ◽  
Dengming Yan ◽  
...  

The Awash river basin has been the most extensively developed and used river basin in Ethiopia since modern agriculture was introduced. This paper investigated the annual precipitation, temperature, and river discharge variability using the innovative trend analysis method (ITAM), Mann–Kendall (MK) test, and Sen’s slope estimator test. The results showed that the trend of annual precipitation was significantly increasing in Fitche (Z = 0.82) and Gewane (Z = 0.80), whereas the trend in Bui (Z = 69) was slightly decreasing and the trend in Sekoru (Z = 0.45) was sharply decreasing. As far as temperature trends were concerned, a statistically significant increasing trend was observed in Fitche (Z = 3.77), Bui (Z = 4.84), and Gewane (Z = 5.59). However, the trend in Sekoru (Z = 1.37) was decreasing with statistical significance. The discharge in the study basin showed a decreasing trend during the study period. Generally, the increasing and decreasing levels of precipitation, temperature, and discharge across the stations in this study indicate the change in trends. The results of this study could help researchers, policymakers, and water resources managers to understand the variability of precipitation, temperature, and river discharge over the study basin.

Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 38
Author(s):  
Mohan Bahadur Chand ◽  
Bikas Chandra Bhattarai ◽  
Prashant Baral ◽  
Niraj Shankar Pradhananga

Study of spatiotemporal dynamics of temperature is vital to assess changes in climate, especially in the Himalayan region where livelihoods of billions of people living downstream depends on water coming from the melting of snow and glacier ice. To this end, temperature trend analysis is carried out in Narayani river basin, a major river basin of Nepal characterized by three climatic regions: tropical, subtropical and alpine. Temperature data from six stations located within the basin were analyzed. The elevation of these stations ranges from 460 to 3800 m a.s.l. and the time period of available temperature data ranges from 1960–2015. Multiple regression and empirical mode decomposition (EMD) methods were applied to fill in missing data and to detect trends. Annual as well as seasonal trends were analyzed and a Mann-Kendall test was employed to test the statistical significance of detected trends. Results indicate significant cooling trends before 1970s, and warming trends after 1970s in the majority of the stations. The warming trends range from 0.028 °C year−1 to 0.035 °C year−1 with a mean increasing trend of 0.03 °C year−1 after 1971. Seasonal trends show highest warming trends in the monsoon season followed by winter, pre-monsoon, and the post-monsoon season. However, difference in warming rates between different seasons was not significant. An average temperature lapse rate of −0.006 °C m−1 with the steepest value (−0.0064 °C m−1) in pre-monsoon season and least negative (−0.0052 °C m−1) in winter season was observed for this basin. A comparative analysis of the gap-filled data with freely available global climate datasets shows reasonable correlation thus confirming the suitability of the gap filling methods.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1782 ◽  
Author(s):  
Maochuan Hu ◽  
Takahiro Sayama ◽  
Sophal TRY ◽  
Kaoru Takara ◽  
Kenji Tanaka

Understanding long-term trends in hydrological and climatic variables is of high significance for sustainable water resource management. This study focuses on the annual and seasonal trends in precipitation, temperature, potential evapotranspiration, and river discharge over the Kamo River basin from the hydrological years 1962 to 2017. Homogeneity was examined by Levene’s test. The Mann–Kendall and a modified Mann–Kendall test as well as Sen’s slope estimator were used to analyze significant trends (p < 0.05) in a time series with and without serial correlation and their magnitudes. The results indicate that potential evapotranspiration calculated by the Penman–Monteith equation was highly related to temperature, and significantly increased in the annual and summer series. Annual river discharge significantly decreased by 0.09 m3/s. No significant trend was found at the seasonal scale. Annual, autumn, and winter precipitation at Kumogahata station significantly increased, while no significant trend was found at Kyoto station. Precipitation was least affected by the modified Mann–Kendall test. Other variables were relatively highly autocorrelated. The modified Mann–Kendall test with a full autocorrelation structure improved the accuracy of trend analysis. Furthermore, this study provides information for decision makers to take proactive measures for sustainable water management.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 21 ◽  
Author(s):  
Mohan Chand ◽  
Bikas Bhattarai ◽  
Prashant Baral ◽  
Niraj Pradhananga

Study of spatiotemporal dynamics of temperature is vital to assess changes in climate, especially in the Himalayan region where livelihoods of billions of people living downstream depends on water coming from the melting of snow and glacier. To this end, temperature trend analysis is carried out in Narayani river basin, a major river basin of Nepal characterized by three climatic regions: tropical, subtropical and alpine. Temperature data from six stations located within the basin are analyzed. The elevation of these stations ranges from 460 to 3800 m asl. and the time period of available temperature data ranges from 1960–2015. Multiple regression and empirical mode decomposition (EMD) methods are applied to fill in the missing data. Annual as well as seasonal trends are analyzed and Mann-Kendall test is employed for testing the statistical significance of detected trend. Results indicate significant cooling trends before 1970s, and warming trends after 1970s in the majority of the stations. The warming trends range from 0.028 ∘ C per year to 0.035 ∘ C per year with a mean increasing trend of 0.03 ∘ C per year after 1971. Seasonal trends show highest warming trends in monsoon season followed by winter, pre-monsoon, and post-monsoon season. However, difference in warming rates between different seasons isn’t sufficiently large. An average temperature lapse rate of −0.006 ∘ C per m with the steepest value (−0.0064 ∘ C per m) in pre-monsoon season and least negative (−0.0052 ∘ C per m) in winter season is observed for this basin. A comparative analysis of the gap-filled data with freely available global climate data sets shows reasonable correlation thus confirming the suitability of the gap filling methods.


Author(s):  
Djan'na H. Koubodana ◽  
Moustapha Tall ◽  
Ernest Amoussou ◽  
Muhammad Mumtaz ◽  
Julien Adounkpe ◽  
...  

This paper performs non-parametric Mann Kendall (MK) trend analysis of historical hydroclimatic data (1961-2016), an ensemble climate model validation and a computation of 16 Expert Team on Climate Change Detection and Indices (ETCCDI) temperature and rainfall extremes indices. The climate indices are evaluated using MK test and annual trend analysis for two Representative Concentration Pathways (RCP4.5 &amp; RCP8.5) future scenarios from 2020 to 2045 over Mono River Basin (MRB) in Togo. The annual and seasonal trend analyses are assessed on historical potential evapotranspiration, mean temperature, rainfall and discharge data. Results show positive and negative trends of hydroclimatic data over MRB from1961 to 2016. Mean temperatures increase significantly in most of the stations while a negative non-significant trend is noticed for rainfall. Meanwhile, the discharge presents a significant seasonal and annual trend for three gauge stations (Corrokope, Nangb&eacute;to and Athi&eacute;m&eacute;). Validation of the ensemble climate models reveals that the model under-estimates observations at Sokode, Atkakpam&eacute; and Tabligbo stations, however linear regression and spatial correlation coefficients are higher than 0.6. Moreover, the percentage of bias between climate model and observations are less than 15% at most of the stations. Finally, the computation of extreme climatic indices under RCP4.5 and RCP8.5 scenarios shows a significant annual trend of some extreme climatic indices of rainfall and temperature at selected stations between 2020 and 2045 in the MRB. Therefore, relevant governmental politics are needed to elaborate strategies and measures to cope with projected climate changes impacts in the country.


Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 35 ◽  
Author(s):  
Mahtsente Tibebe Tadese ◽  
Lalit Kumar ◽  
Richard Koech ◽  
Birhanu Zemadim

The objective of this study was to characterize, quantify and validate the variability and trends of hydro-climatic variables in the Awash River Basin (ARB) in Ethiopia using graphical and statistical methods. The rainfall and streamflow trends and their relationships were evaluated using the regression method, Mann–Kendall (MK) test and correlation analysis. The analysis focused on rainfall and streamflow collected from 28 and 18 stations, respectively. About 85.7% and 75.3% of the rainfall stations exhibited normal to moderate variability in annual and June to September rainfall, respectively, whereas 96.43% of rainfall stations showed high variability in March to May. The MK test showed that most of the significant trends in annual rainfall were decreasing except in two stations. These research findings provide valuable information on the characteristics, variability, and trend of rainfall and streamflow necessary for the design of sustainable water management strategies and to reduce the impact of droughts and floods in the ARB.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 49
Author(s):  
Mohan Bahadur Chand ◽  
Bikas Chandra Bhattarai ◽  
Niraj Shankar Pradhananga ◽  
Prashant Baral

Study of spatiotemporal dynamics of temperature is vital to assess changes in climate, especially in the Himalayan region where livelihoods of billions of people living downstream depends on water coming from the melting of snow and glacier ice. To this end, temperature trend analysis is carried out in Narayani river basin, a major river basin of Nepal characterized by three climatic regions: tropical, subtropical and alpine. Temperature data from six stations located within the basin were analyzed. The elevation of these stations ranges from 460 to 3800 m a.s.l. and the time period of available temperature data ranges from 1960–2015. Multiple regression and empirical mode decomposition (EMD) methods were applied to fill in missing data and to detect trends. Annual as well as seasonal trends were analyzed and a Mann-Kendall test was employed to test the statistical significance of detected trends. Results indicate significant cooling trends before 1970s, and warming trends after 1970s in the majority of the stations. The warming trends range from 0.028 ∘C year−1 to 0.035 ∘C year−1 with a mean increasing trend of 0.03 ∘C year−1 after 1971. Seasonal trends show highest warming trends in the monsoon season followed by winter, pre-monsoon, and the post-monsoon season. However, difference in warming rates between different seasons was not significant. An average temperature lapse rate of −0.006 ∘C m−1 with the steepest value (−0.0064 ∘C m−1) in pre-monsoon season and least negative (−0.0052 ∘C m−1) in winter season was observed for this basin. A comparative analysis of the gap-filled data with freely available global climate datasets show reasonable correlation thus confirming the suitability of the gap filling methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ying Wu ◽  
Wensheng Wang ◽  
Guoqing Wang

This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.


2021 ◽  
Vol 13 (3) ◽  
pp. 1153
Author(s):  
Batsuren Dorjsuren ◽  
Nyamdavaa Batsaikhan ◽  
Denghua Yan ◽  
Otgonbayar Yadamjav ◽  
Sonomdagva Chonokhuu ◽  
...  

The Tuul River Basin is the most important socioeconomic and political base area of Mongolia. Therefore, studying the interrelationships between changes in the ecohydrological processes of this basin and its land cover is of great importance for maintaining sustainability and the environment. This study investigated the annual average air temperature, total annual precipitation, and river discharge variability, and land cover changes at selected stations of the basin by using the hydrometeorological analysis, satellite analysis, and land cover determination statistical analysis. During the study period, the average annual air temperature rose from −1.5 °C to +0.3 °C (1.8 °C 361 °C). The average annual precipitation exhibits relatively low change during this period. River discharge varied during the study period. A significant decreasing trend in river discharge was observed at the Terelj (φ = −2.72) and Ulaanbaatar (φ = −5.63) stations, whereas the other stations, Altanbulag, Lun, and Orkhontuul, showed a significant increasing trend. During the study period, changes in land cover were directly related to main hydrometeorological parameters. Between 2000 and 2020, the amount of grassland decreased by 319.67 km2, while the area of water bodies increased by 28.36 km2. In the study area, mainly water bodies and sensitive areas of the land cover types were changed due to changes in precipitation. Studies in the arid and semiarid regions of Central Asia show that changes of ecohydrological processes have a significant impact on land cover changes.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1680
Author(s):  
Fekadu Aduna Duguma ◽  
Fekadu Fufa Feyessa ◽  
Tamene Adugna Demissie ◽  
Krystyna Januszkiewicz

The Awash River basin is classified into the upper basin, middle basin, and lower basin. The upper basin is the most irrigated and socio-economically important, wherein early and modern agriculture started. This study aimed to assess the upper basin’s hydroclimate variability under climate change from 1991 to 2015 following the county’s land-use policy change. Distinguished topographical settings, namely, lowland, midland, and highland, are used for upper Awash basin hydroclimate trend analysis. Lowland stations revealed a nonsignificant seasonal and annual increasing trend except for the Autumn season. Midland stations showed a decreased seasonal rainfall. Except for Sendafa, the increased station, the highland area exhibited an annual decreasing trend. The Awash-Hombole and Mojo main tributaries are used for the evaluation of basin streamflow. The Awash-Hombole main tributary resulted in annually growing trends during the summer season. Mojo main tributary resulted in a significantly decreasing trend during the spring, summer, and autumn seasons with a 99% level of significance. Therefore, following the basin’s topographic nature, the change of hydroclimatic elements, mainly of the rainfall and streamflow, is observed. Accordingly, its hydroclimate variated by 11 and 38% with precipitation and streamflow, respectively, from the mean value within the study time series.


Sign in / Sign up

Export Citation Format

Share Document