Health Monitoring of Chain Sprocket Drive System based on IoT Device and Convolutional Neural Network

Author(s):  
sang kwon lee ◽  
jiseon Back ◽  
Kanghyun An ◽  
Sunwon Kim ◽  
Changho Lee ◽  
...  

This paper proposes a health monitoring method for the early detection of defects in a chain sprocket drive (CSD) system and classification of fault types before a catastrophic failure occurs. In the operation of a CSD system, the early detection of defects is very useful to prevent system failure. Specially, if the type of defect is known, it will be easy to find a method to fix it. In this work, eight fault types in the components of the CSD system, such as the gear tooth, bearings, and shaft of the drive motor, were arbitrarily made and assembled. To detect the fault signals during the CSD system operation, the vibration is measured by an Internet of Things (IoT) device, which features a wireless MEMS accelerometer, Bluetooth function, Wi-Fi function, and battery. The IoT device is mounted on the gearbox housing. The measured one-dimensional vibration time-series is transformed into time-scale images by continuous wavelet transform (CWT). A convolution neural network (CNN) is employed to extract deep features embedded in the images, which are closely related to fault types. To update the learning parameters of the CNN, the RMSprop learning algorithm is applied, and the CNN is trained using 500 image samples. Multiple classification performance of the trained network is tested using 100 image samples. Feature maps for different fault types are obtained from the final convolution layer of the CNN. For the visualization of fault types, t-stochastic neighbor embedding is employed and applied to the feature maps to convert high-dimensional data into two-dimensional data. Two-dimensional features enabled excellent classification of the eight fault types and one normal type.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Sang Kwon Lee ◽  
Jiseon Back ◽  
Kanghyun An ◽  
Sunwon Kim ◽  
Changho Lee ◽  
...  

This paper proposes a condition monitoring method for the early defect detection in a chain sprocket drive (CSD) system and classification of fault types before a catastrophic failure occurs. In the operation of a CSD system, early defect detection is very useful in preventing system failure. In this work, eight fault types associated with the CSD system components, such as the gear tooth, bearings, and drive motor shaft, were arbitrarily damaged and incorporated into the CSD system. To detect the fault signals during the CSD system operation, the vibration was measured using an Internet of Things (IoT) device, which features a wireless MEMS accelerometer, Bluetooth function, Wi-Fi function, and battery. The IoT device was mounted on the gearbox housing. The measured one-dimensional vibration time-series was transformed into time-scale images using continuous wavelet transform (CWT). A convolution neural network (CNN) was employed to extract deep features embedded in the images, which are closely related to fault types. To update the learning parameters of the CNN, the RMSprop learning algorithm was applied, and the CNN was trained using 500 image samples. Multiple-classification performance of the trained network was tested using 100 image samples. Feature maps for different fault types were obtained from the final CNN convolution layer. For the visualization of fault types, t-stochastic neighbor embedding was employed and applied to the feature maps to convert high-dimensional data into two-dimensional data. Two-dimensional features enabled excellent classification of the eight fault types and one normal type.


2021 ◽  
Vol 11 (3) ◽  
pp. 352
Author(s):  
Isselmou Abd El Kader ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Sani Saminu ◽  
Imran Javaid ◽  
...  

The classification of brain tumors is a difficult task in the field of medical image analysis. Improving algorithms and machine learning technology helps radiologists to easily diagnose the tumor without surgical intervention. In recent years, deep learning techniques have made excellent progress in the field of medical image processing and analysis. However, there are many difficulties in classifying brain tumors using magnetic resonance imaging; first, the difficulty of brain structure and the intertwining of tissues in it; and secondly, the difficulty of classifying brain tumors due to the high density nature of the brain. We propose a differential deep convolutional neural network model (differential deep-CNN) to classify different types of brain tumor, including abnormal and normal magnetic resonance (MR) images. Using differential operators in the differential deep-CNN architecture, we derived the additional differential feature maps in the original CNN feature maps. The derivation process led to an improvement in the performance of the proposed approach in accordance with the results of the evaluation parameters used. The advantage of the differential deep-CNN model is an analysis of a pixel directional pattern of images using contrast calculations and its high ability to classify a large database of images with high accuracy and without technical problems. Therefore, the proposed approach gives an excellent overall performance. To test and train the performance of this model, we used a dataset consisting of 25,000 brain magnetic resonance imaging (MRI) images, which includes abnormal and normal images. The experimental results showed that the proposed model achieved an accuracy of 99.25%. This study demonstrates that the proposed differential deep-CNN model can be used to facilitate the automatic classification of brain tumors.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


2012 ◽  
Vol 7 (47) ◽  
pp. 6357-6362 ◽  
Author(s):  
Pilarski Krzysztof ◽  
Boniecki Piotr ◽  
Slosarz Piotr ◽  
Dach Jacek ◽  
Boniecka Piekarska Hanna ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shifei Ding ◽  
Nan Zhang ◽  
Xinzheng Xu ◽  
Lili Guo ◽  
Jian Zhang

Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM) put forward deep extreme learning machine (DELM) and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI) competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3567 ◽  
Author(s):  
Xu ◽  
Yuan ◽  
Chen ◽  
Ren

Fatigue crack diagnosis (FCD) is of great significance for ensuring safe operation, prolonging service time and reducing maintenance cost in aircrafts and many other safety-critical systems. As a promising method, the guided wave (GW)-based structural health monitoring method has been widely investigated for FCD. However, reliable FCD still meets challenges, because uncertainties in real engineering applications usually cause serious change both to the crack propagation itself and GW monitoring signals. As one of deep learning methods, convolutional neural network (CNN) owns the ability of fusing a large amount of data, extracting high-level feature expressions related to classification, which provides a potential new technology to be applied in the GW-structural health monitoring method for crack evaluation. To address the influence of dispersion on reliable FCD, in this paper, a GW-CNN based FCD method is proposed. In this method, multiple damage indexes (DIs) from multiple GW exciting-acquisition channels are extracted. A CNN is designed and trained to further extract high-level features from the multiple DIs and implement feature fusion for crack evaluation. Fatigue tests on a typical kind of aircraft structure are performed to validate the proposed method. The results show that the proposed method can effectively reduce the influence of uncertainties on FCD, which is promising for real engineering applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Varun Srivastava ◽  
Ravindra Kumar Purwar

This paper presents a two-dimensional wavelet based decomposition algorithm for classification of biomedical images. The two-dimensional wavelet decomposition is done up to five levels for the input images. Histograms of decomposed images are then used to form the feature set. This feature set is further reduced using probabilistic principal component analysis. The reduced set of features is then fed into either K nearest neighbor algorithm or feed-forward artificial neural network, to classify images. The algorithm is compared with three other techniques in terms of accuracy. The proposed algorithm has been found better up to 3.3%, 12.75%, and 13.75% on average over the first, second, and third algorithm, respectively, using KNN and up to 6.22%, 13.9%, and 14.1% on average using ANN. The dataset used for comparison consisted of CT Scan images of lungs and MR images of heart as obtained from different sources.


Sign in / Sign up

Export Citation Format

Share Document