scholarly journals COVID-19 Epidemic Compartments Model and Bangladesh

Author(s):  
Md. Shahidul Islam ◽  
Jannatun Irana Ira ◽  
K. M. Ariful Kabir ◽  
Md. Kamrujjaman

In the promptness of the COVID-19 outbreak, it would be very important to observe and estimate the pattern of diseases to reduce the contagious infection. To study this effect, we developed a COVID-19 epidemic model that incorporates five various groups of individuals. Then we analyze the model by evaluating the equilibrium points and analyzing their stability as well as determining the basic reproduction number. Also, numerical simulations show the dynamics of a different group of the population over time. Thus, our findings based on the sensitivity analysis and the reproduction number highlight the role of outbreak of the virus that can be useful to avoid a massive collapse in Bangladesh and rest of the world. The outcome of this study concludes that outbreak will be in control which ensure the social and economic stability.

Author(s):  
Md. Shahidul Islam ◽  
Jannatun Irana Ira ◽  
K. M. Ariful Kabir ◽  
Md. Kamrujjaman

In the promptness of the COVID-19 outbreak, it would be very important to observe and estimate the pattern of diseases to reduce the contagious infection. To study this effect, we developed a COVID-19 analytical epidemic framework that combines with isolation and lockdown effect by incorporating five various groups of individuals. Then we analyze the model by evaluating the equilibrium points and analyzing their stability as well as determining the basic reproduction number. The extensive numerical simulations show the dynamics of a different group of the population over time. Thus, our findings based on the sensitivity analysis and the reproduction number highlight the role of outbreak of the virus that can be useful to avoid a massive collapse in Bangladesh and rest of the world. The outcome of this study concludes that outbreak will be in control which ensures the social and economic stability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Juan Liang ◽  
Zhirong Zhao ◽  
Can Li

Brucellosis is one of the major infectious diseases in China. In this study, we consider an SI model of animal brucellosis with transport. The basic reproduction number ℛ0 is obtained, and the stable state of the equilibria is analyzed. Numerical simulation shows that different initial values have a great influence on results of the model. In addition, the sensitivity analysis of ℛ0 with respect to different parameters is analyzed. The results reveal that the transport has dual effects. Specifically, transport can lead to increase in the number of infected animals; besides, transport can also reduce the number of infected animals in a certain range. The analysis shows that the number of infected animals can be controlled if animals are transported reasonably.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Victor Yiga ◽  
Hasifa Nampala ◽  
Julius Tumwiine

Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito population depends on a threshold value θ , defined as the number of mosquitoes produced by a female Anopheles mosquito throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall affect the transmission dynamics of malaria; however, temperature has more influence.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2020 ◽  
Author(s):  
Avaneesh Singh ◽  
Manish Kumar Bajpai

We have proposed a new mathematical method, SEIHCRD-Model that is an extension of the SEIR-Model adding hospitalized and critical twocompartments. SEIHCRD model has seven compartments: susceptible (S), exposed (E), infected (I), hospitalized (H), critical (C), recovered (R), and deceased or death (D), collectively termed SEIHCRD. We have studied COVID- 19 cases of six countries, where the impact of this disease in the highest are Brazil, India, Italy, Spain, the United Kingdom, and the United States. SEIHCRD model is estimating COVID-19 spread and forecasting under uncertainties, constrained by various observed data in the present manuscript. We have first collected the data for a specific period, then fit the model for death cases, got the values of some parameters from it, and then estimate the basic reproduction number over time, which is nearly equal to real data, infection rate, and recovery rate of COVID-19. We also compute the case fatality rate over time of COVID-19 most affected countries. SEIHCRD model computes two types of Case fatality rate one is CFR daily and the second one is total CFR. We analyze the spread and endpoint of COVID-19 based on these estimates. SEIHCRD model is time-dependent hence we estimate the date and magnitude of peaks of corresponding to the number of exposed cases, infected cases, hospitalized cases, critical cases, and the number of deceased cases of COVID-19 over time. SEIHCRD model has incorporated the social distancing parameter, different age groups analysis, number of ICU beds, number of hospital beds, and estimation of how much hospital beds and ICU beds are required in near future.


2021 ◽  
Vol 4 (1) ◽  
pp. 46-64
Author(s):  
Muhammad Afief Balya ◽  
Bunga Oktaviani Dewi ◽  
Faza Indah Lestari ◽  
Gayatri Ratu ◽  
Hanna Rosuliyana ◽  
...  

In this article, we propose and analyze a mathematical model of COVID-19 transmission among a closed population, with social awareness and rapid test intervention as the control variables. For this, we have constructed the model using a compartmental system of the ordinary differential equations. Dynamical analysis regarding the existence and local stability of equilibrium points is conducted rigorously. Our analysis shows that COVID-19 will disappear from the population if the basic reproduction number is less than one, and persist if the basic reproduction number is greater than one. In addition, we have shown a trans-critical bifurcation phenomenon based on our proposed model when the basic reproduction number equals one. From the elasticity analysis, we have observed that rapid testing is more promising in reducing the basic reproduction number as compared to a media campaign to improve social awareness on COVID-19. Using the Pontryagin Maximum Principle (PMP), the characterization of our optimal control problem is derived analytically and solved numerically using the forward-backward iterative algorithm. Our cost-effectiveness analysis shows that using rapid test and media campaigns partially are the best intervention strategy to reduce the number of infected humans with the minimum cost of intervention. If the intervention is to be implemented as a single intervention, then using solely the rapid test is a more promising and low-cost option in reducing the number of infected individuals vis-a-vis a media campaign to increase social awareness as a single intervention.


Sign in / Sign up

Export Citation Format

Share Document