scholarly journals Exploring Multidrug Resistant and Possible Extensively Drug Resistant Extended-Spectrum Β-Lactamase-Producing Escherichia coli Isolated from Frozen Chicken Meat in Bangladesh

Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Multidrug resistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is considered a serious concern to public health worldwide including Bangladesh, and chicken meat is recognized as an important reservoir of ESBL-Ec dissemination to humans. Therefore, this study aimed to determine the prevalence, and phenotypic and genotypic antimicrobial resistance pattern of ESBL-producing Escherichia coli (ESBL-Ec) in frozen chicken meat. A total of 113 frozen chicken meat samples were purchased from 40 outlets of 9 branded supershops in five megacities in Bangladesh. Isolation and identification of Escherichia coli were done based on cultural, biochemical properties and PCR assay. The resistance pattern was determined by disk diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% samples were positive for Escherichia coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively while only 11.6% were resistant to 3–5 classes. The possible extensively drug resistance (pXDR) was found in 2.3% isolates. The high single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim-sulphamethoxazole and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates were carried blaCTX-M-1 gene. This study provided evidence of wide dissemination of MDR and existence of pXDR ESBL-Ec in frozen chicken meat in Bangladesh. Our data clearly indicated that frozen chicken meat is, at the present time, the most significant known food source of ESBL-Ec to which peoples are regularly exposed.

Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 420 ◽  
Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Escherichia coli is known as one of the most important foodborne pathogens in humans, and contaminated chicken meat is an important source of foodborne infection with this bacterium. The occurrence of extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-Ec), in particular, in chicken meat is considered a global health problem. This study aimed to determine the magnitude of E. coli, with special emphasis on ESBL-Ec, along with their phenotypic antimicrobial resistance pattern in frozen chicken meat. The study also focused on the determination of ESBL-encoding genes in E. coli. A total of 113 frozen chicken meat samples were purchased from 40 outlets of nine branded supershops in five megacities in Bangladesh. Isolation and identification of E. coli were done based on cultural and biochemical properties, as well as PCR assay. The resistance pattern was determined by the disc diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% of samples were positive for E. coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively, while only 11.6% were resistant to 3–5 classes. Possible extensive drug resistance (pXDR) was found in 2.3% of isolates. High single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim–sulfamethoxazole, and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for the blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates carried the blaCTX-M-1 gene. This study provided evidence of the existence of MDR and pXDR ESBL-Ec in frozen chicken meat in Bangladesh, which may pose a risk to human health if the meat is not properly cooked or pickled raw only. This emphasizes the importance of the implementation of good slaughtering and processing practices by the processors.


Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Escherichia coli is known as one of the most important foodborne pathogens in humans, and contaminated chicken meat is an important source of foodborne infection with this bacterium. The occurrence of extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-Ec), in particular, in chicken meat is considered a global health problem. This study aimed to determine the magnitude of E. coli, with special emphasis on ESBL-Ec, along with their phenotypic antimicrobial resistance pattern in frozen chicken meat. The study also focused on the determination of ESBL-encoding genes in E. coli. A total of 113 frozen chicken meat samples were purchased from 40 outlets of nine branded supershops in five megacities in Bangladesh. Isolation and identification of E. coli were done based on cultural and biochemical properties, as well as PCR assay. The resistance pattern was determined by the disc diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% of samples were positive for E. coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively, while only 11.6% were resistant to 3–5 classes. Possible extensive drug resistance (pXDR) was found in 2.3% of isolates. High single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim–sulfamethoxazole, and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for the blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates carried the blaCTX-M-1 gene. This study provided evidence of the existence of MDR and pXDR ESBL-Ec in frozen chicken meat in Bangladesh, which may pose a risk to human health if the meat is not properly cooked or pickled raw only. This emphasizes the importance of the implementation of good slaughtering and processing practices by the processors.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2015 ◽  
Vol 13 (1) ◽  
pp. 45-51 ◽  
Author(s):  
AKMA Islam ◽  
M Rahman ◽  
A Nahar ◽  
A Khair ◽  
MM Alam

Molecular technique was used to investigate the prevalence of virulent diarrheic genes in pathogenic Escherichia coli and their antibiotic sensitivity patterns. A hundred samples from 100 different diarrheic calves from mid-north-western part of Bangladesh were screened for the presence of virulence factors associated with diarrhea. Following isolation and identification on the basis of cultural, morphological and biochemical properties, the presence of the virulence genes such as eaeA, bfpA, elt, est, stx1 and stx2 were examined using PCR. Antimicrobial susceptibility of 57 E. coli was determined by agar disk diffusion method for 8 antimicrobial agents. Out of 100 samples 57 (57%) were found to be positive for E. coli and their distribution rates according to their age, breed and sex were  66.7% ( 6 days old ), 85.7% (Sahiwal breed) and in  64.2 % (female calves) respectively. Among 57 E. coli isolates, only 16 isolates were analyzed for the detection of the said genes. Among them, only eaeA gene was detected in 2 E. coli isolates (12.5 %). Antibiotic resistance patterns revealed that Oxacillin, Rifampicin and Penicillin were  100% resistant followed by Erythromycin which was more than 80% resistant. In case of Amoxicillin and Tetracycline, about 59.65% and 61.40% were found to be resistant respectively whereas all 57 E. coli isolates showed moderately susceptible (30%) to Cefuroxime, a second generation Cephalosporin. Therefore, none of the eight antimicrobials studied can not be recommended as single best therapeutic agent for the treatment of neonatal calf diarrhea. In addition, this study indicated that diarrhea in calves in these locations can be ascribed to mainly Enteropathogenic E. coli (EPEC) which was atypical (only contained the eaeA genes but not bfpA). However, further studies are necessary to characterize the isolated eaeA gene positive E. coli by serotyping, tissue culture assay and other molecular techniques to find out the potentiality of those virulent genes contributing pathogenicity of E. coli causing diarrhea in calves.DOI: http://dx.doi.org/10.3329/bjvm.v13i1.23716Bangl. J. Vet. Med. (2015). 13 (1): 45-51


Author(s):  
Ashna Bhasin Poonam Loomba ◽  
Abha Sharma Bibhabati Mishra ◽  
Ashish Bajaj

Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of hospital as well as community acquired infections. They’re strenuous to treat as most of isolates exhibit various degrees of beta- lactamase mediated resistance to majority of the beta-lactam antibiotics. Single isolate can express multiple β- lactamase enzymes, further limiting the treatment options. Therefore, this study was outlined to research the coexistence of various beta-lactamase enzymes in clinical isolates of P. aeruginosa. The aim of the study was to detect the co-prevalence of Extended Spectrum Beta lactmases (ESBL), AmpC and Metallo β-Lactamases (MBL) in Pseudomonas aeruginosa isolates from a superspeciality center. Fifty clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta- lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Discernment of AmpC beta-lactamase was performed by disk antagonism while ESBL detection was done by the combined disk diffusion method as per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Eleven of 50 (22%) isolates were confirmed to be positive for AmpC and Extended spectrum beta lactamases. Co-production of AmpC along side ESBL and MBL was reported in 12 % isolates. The study shows the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Consequently, formulation of a correct antibiotic policy and taking measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to mitigate the emergence of this multiple beta-lactamase producing pathogens.


2019 ◽  
Vol 44 (2) ◽  
pp. 228
Author(s):  
R. Yulistiani ◽  
D. Praseptiangga ◽  
S. Supyani ◽  
S. Sudibya

This study aimed to compare the antibiotic resistance patterns among original Enterobacteriaceae isolates from broiler and backyard chicken meats in Surabaya, Indonesia, isolated in 2016-2017. The Kirby–Bauer disk diffusion method was used to determine the resistance of these isolates against tetracycline (TE), gentamicin (CN), cefoxitin (FOX), sulfamethoxazole-trimethoprim (SXT), nalidixic acid (NA), and chloramphenicol (C). Both broiler and backyard chicken meat isolates were resistant to the six antibiotics tested. Overall, broiler meat isolates which resistant to TE, CN, FOX, SXT, NA, C were 57.76% higher than backyard chicken meat isolates. More than 50% of broiler meat isolates (304 samples) were resistant to TE and NA, whereas backyard chicken meat isolates (310 samples) were only resistant to TE. The resistant strains found in both meat isolates were Salmonella spp., Escherichiacoli, Shigella spp., Citrobacter spp., Klebsiella spp., Yersinia spp., Proteus spp., Enterobacter spp., Serratia spp., and Edwardsiella spp. Resistant strains of broiler meat isolates were significantly higher (P<0.05) than backyard chicken meat isolates, except Edwardsiella spp. Overall, multidrug-resistant Enterobacteriaceae was found to be higher in broiler meat isolates than in backyard chicken meat isolates. Broiler and backyard chicken meats are potential reservoirs of multidrug-resistant Enterobacteriaceae which threat to public health.


2019 ◽  
Vol 20 (1) ◽  
pp. 125
Author(s):  
Connie Januari ◽  
Mirnawati Bachrum Sudarwanto ◽  
Trioso Purnawarman

Antibiotic use in farm is spread widely to treat of poultry disease including therapy, supportive or preventive use and as afeed additive to improve chicken performance. The negative effects of antibiotic use can increase the level of bacterial resistance to antibiotics. This study aimed to investigate on antibiotic resistance in Escherichia coli isolated from chicken meat that were sold in Traditional Market of Bogor City. A total of 175 samples of chicken meat were taken by purposive sampling method, out of 175 found 50 positive samples of E. coli. The samples were subjected to E. coli examination and the isolated E. coli were tested for the antibiotic resistance using eight antibiotics, i.e., amoxicillin, cefotaxime, colistin, nalidixid acid, streptomycin, erythromycin, oxytetracillin, and tetracycline. The study was conducted by using the disk diffusion method on Muller-Hinton agar according to the Clinical and Laboratory Standards Institute guidelines. The study showed E. coli isolated from chicken meat were resistance towards amoxicilin (90%), colistin (94%), nalidixid acid (86%), streptomycin (98%), erythromycin (98%), oxytetracillin (84%), tetracycline (86%), and cefotaxime antibiotics (12%). The proportion of multidrugresistant was 99%. The higher of multidrug-resistant indicated the E. coli would be a threat to public and environmental health. 


2020 ◽  
Vol 83 (12) ◽  
pp. 2200-2208
Author(s):  
NAHLA O. ELTAI ◽  
HADI M. YASSINE ◽  
TAHRA EL-OBEID ◽  
SARA H. AL-HADIDI ◽  
ASMAA A. AL THANI ◽  
...  

ABSTRACT The spread of antibiotic resistance among bacterial strains has been associated with consumption of food contaminated with both pathogenic and nonpathogenic bacteria. The objective of this study was to determine the prevalence of antibiotic resistant Escherichia coli isolates in local and imported retail raw chicken meat in Qatar. A total of 270 locally produced (chilled) and imported (chilled or frozen) whole chicken carcasses were obtained from three Hypermarket stores in Qatar. The 216 E. coli isolates recovered from the chicken samples were subjected to antibiotic susceptibility testing with the disk diffusion method. Extended-spectrum β-lactamase (ESBL) production was evaluated with the double disk synergy test. Isolates harboring colistin resistance were identified with a multiplex PCR assay and DNA sequencing. Nearly 89% (192) of the 216 isolates were resistant to at least one of the 18 antibiotics tested. Isolates from local and imported chicken carcasses had relatively higher resistance to sulfamethoxazole (62% of isolates), tetracycline (59.7%), ampicillin and trimethoprim (52.3% each), ciprofloxacin (47.7%), cephalothin (45.4%), and colistin (31.9%). Less resistance was found to amoxicillin–clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%), piperacillin-tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers, and 137 (63.4%) were multidrug resistant. The percentages of multidrug-resistant, ESBL-producing, and colistin resistant isolates were significantly higher among isolates from local chilled than from imported chilled and frozen chicken samples. Our findings indicate the high prevalence of antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. HIGHLIGHTS


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2010 ◽  
Vol 4 (04) ◽  
pp. 239-242 ◽  
Author(s):  
Supriya Upadhyay ◽  
Malay Ranjan Sen ◽  
Amitabha Bhattacharjee

Introduction: Infections caused by Pseudomonas aeruginosa are difficult to treat as the majority of isolates exhibit varying degrees of beta-lactamase mediated resistance to most of the beta-lactam antibiotics. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus the present study was designed to investigate the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa. Methodology: A total of 202 clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Detection of AmpC beta-lactamase was performed by disk antagonism test and a modified three-dimensional method, whereas detection of ESBL was done by the combined disk diffusion method per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Results: A total of 120 (59.4%) isolates were confirmed to be positive for AmpC beta-lactamase. Among them, 14 strains (7%) were inducible AmpC producers. Co-production of AmpC along with extended spectrum beta-lactamase and metallo beta-lactamase was reported in 3.3% and 46.6% isolates respectively. Conclusion: The study emphasizes the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Thus proper antibiotic policy and measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta-lactamase producing pathogens.


Sign in / Sign up

Export Citation Format

Share Document