scholarly journals The Impact of Climate Change and Global Warming on Utilization of Crop Genetic Resources

Author(s):  
Ardeshir B. Damania

Abstract: A large number of collecting expeditions were launched in regions of ‘centers of diversity’ and hundreds of thousands of sample have been collected and stored in gene banks as ‘genetic resources’. So far, only a small number of the samples have been evaluated for their biotic and abiotic stress tolerance. Now, their time to become useful has come. A new global phenomenon has arisen – climate change. The crop genetic resources and their wild progenitors that have survived countless years of changing environment during the last 11,000 years could harbor genes that may be useful under the new growing conditions and environmental factors thrown up by climate change and global warming. With the deployment of modern bio-engineering techniques selected genes or gene fragments can be transferred from genetic resources to modern varieties of crop plants to make them well-prepared to mitigate the effects of global warming and climate change. The latter is the most serious issue facing plant breeders today. New pests and diseases could affect crop production. These review paper discusses various impacts and issues as a result of this phenomenon and suggest ways to safeguard our most important crops through better management of crop plant genetic resources in the near future.

1989 ◽  
Vol 16 (4) ◽  
pp. 311-316 ◽  
Author(s):  
Kar-Ling Tao ◽  
J. Trevor Williams ◽  
Dick H. van Sloten

Plant genetic resources are vital in safeguarding and increasing crop production and enhancing human nutrition, particularly in a Man-dominated world. Crop genetic resources are currently under threat of loss for various reasons. Conservation as seed is the most common and practicable method of preserving plant genetic resources. The International Board for Plant Genetic Resources (IBPGR), in cooperation with gene-banks around the world, has created a global network of base-collections. In order to minimize losses of stock in the gene-banks, standards were developed in 1985 and base-collections were assessed against them.


1995 ◽  
Vol 75 (1) ◽  
pp. 61-68 ◽  
Author(s):  
A. Touré ◽  
D. J. Major ◽  
C. W. Lindwall

Increasing concentrations of greenhouse gases are expected to result in global warming which will affect crop production. Crop modelling is a useful tool for assessing the impact of climate change on crop production. The objective of this study was to select an appropriate model for climate change studies. Five simulation models, EPIC, CERES, Century, Sinclair and Stewart, were assessed using data from a long-term experiment begun in 1911 on a clay loam (Dark Brown Chernozem) soil at Lethbridge, AB. Yields predicted by the five models were compared with actual spring wheat yields in continuous wheat, fallow-wheat and fallow-wheat-wheat rotations. The EPIC model gave the best simulation results over all rotations and the most accurate predictions of mean yields during droughts. It was concluded that the EPIC model had the greatest potential for assessing the impact of climate change on wheat yield. The Stewart model was the most accurate for unfertilized continuous wheat and fallow-wheat. The Sinclair model was most accurate for fertilized fallow-wheat and CERES was the most accurate model for fertilized continuous wheat. The Century model simulated average yield accurately but did not account for year-to-year variability. Key words: Global warming, crop simulation, spring wheat yields


Author(s):  
Tshepo S. Masipa

This article aims to examine the impact of climate change on food security in South Africa. For this purpose, the article adopted a desktop study approach. Previous studies, reports, surveys and policies on climate change and food (in)security. From this paper’s analysis, climate change presents a high risk to food security in sub-Saharan countries from crop production to food distribution and consumption. In light of this, it is found that climate change, particularly global warming, affects food security through food availability, accessibility, utilisation and affordability. To mitigate these risks, there is a need for an integrated policy approach to protect the arable land against global warming. The argument advanced in this article is that South Africa’s ability to adapt and protect its food items depends on the understanding of risks and the vulnerability of various food items to climate change. However, this poses a challenge in developing countries, including South Africa, because such countries have weak institutions and limited access to technology. Another concern is a wide gap between the cost of adapting and the necessary financial support from the government. There is also a need to invest in technologies that will resist risks on food systems.


2014 ◽  
Vol 14 (1) ◽  
pp. 11-27 ◽  
Author(s):  
Tone Winge

This article links the concept of access and benefit-sharing as it pertains to crop genetic resources to climate change adaptation and argues that systems for access and benefit-sharing can, and should, be designed to contribute to climate change adaptation for agriculture. The access and benefit-sharing provisions of the two international agreements that together provide the international legal framework for access and benefit-sharing – the Convention on Biological Diversity (with its Nagoya Protocol) and the International Treaty on Plant Genetic Resources for Food and Agriculture – are presented and analysed. How these agreements are implemented is central to adaptation, as the effects of climate change threaten crop genetic resources and future adaptive capacity, and, if properly maintained and utilized, crop genetic resources will be essential to climate change adaptation across the globe. This article, therefore, argues that an important adaptation strategy linked to such implementation is to direct benefit-sharing for crop genetic resources towards adaptation efforts and to ensure facilitated and efficient access to crop genetic resources for adaptation purposes. Some options for how this can be pursued at both the international and national level are offered.


Author(s):  
N. V. Kulyakina ◽  
G. A. Kuzmitskaya ◽  
T. K. Yurechko

The downy mildew (peronosporosis) is the most dangerous and harmful cucumber disease in the Far-Eastern region. Its harmfulness is the highest during the period of flowering – fruiting, because it may completely ruin the cucumber plants both in open and protected ground. Use of cucumber sorts with effective genes that are resistant to the disease is the most efficient way to fight cucumber peronosporosis. In this connection the publication adduces the facts of study the sorts and hybrids of different ecological and geographical origin from the genetic resources collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in comparison with three zoned sorts of DV NIISH selection – Mig, Khabar, Amurchonok. The aim of researches – to identify the sort samples cucumber according to the main economically valuable traits and also to the degree resistance of genetypes to the main disease of the culture in the region – downy mildew (peronosporosis), for allow to select the source material for the creation of sorts and hybrids, highly productive and resistant to biotic and abiotic stress environmental factors in the monsoon climate conditions of Khabarovsk region. The perspective genetypes having both the resistance to the diseases and productivity are not revealed as a result of the evaluation of the collection of cucumber samples according to their susceptibility by fungus diseases and productivity. Slavyanskiy (Belarus) is more resistant to peronosporosis, especially in 2016 year conditions, although it was inferior to the damage degree of disease to the zoned sorts – Mig, Khabar, Amurchonok. This perspective sample is planned to be used as a source of donors of the main economically valuable traits in a further selective work.


Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Mirko Andreja Borisov

Climate change conditions a wide range of impacts such as the impact on weather, but also on ecosystems and biodiversity, agriculture and forestry, human health, hydrological regime and energy. In addition to global warming, local factors affecting climate change are being considered. Presentation and analysis of the situation was carried out using geoinformation technologies (radar recording, remote detection, digital terrain modeling, cartographic visualization and geostatistics). This paper describes methods and use of statistical indicators such as LST, NDVI and linear correlations from which it can be concluded that accelerated construction and global warming had an impact on climate change in period from 1987 to 2018 in the area of Vojvodina – Republic of Serbia. Also, using the global SRTM DEM, it is shown how the temperature behaves based on altitude change. Conclusions and possible consequences in nature and society were derived.


Sign in / Sign up

Export Citation Format

Share Document