scholarly journals Peculiarities of Micro-Mechanical Behavior of 3D-Printed Aluminium Alloy: In Situ SEM Study

Author(s):  
Eugene S. Statnik ◽  
Kirill V. Nyaza ◽  
Alexey I. Salimon ◽  
Dmitry Ryabov ◽  
Alexander M. Korsunsky

3D-printed aluminium alloy fabrications made by selective laser melting (SLM) offer a promising route for the production of small series of custom-designed heat exchangers with complex geometry and shape and miniature size. Alloy composition and printing parameters need to be optimized to mitigate fabrication defects (pores and microcracks) and enhance the part performance. The deformation response needs to be studied with adequate characterization techniques at relevant dimensional scale capturing the peculiarities of micro-mechanical behavior relevant to the particular article and specimen dimensions. Purposefully designed Al-Si-Mg 3D-printable RS-333 alloy was investigated with a number of microscopy techniques including in situ mechanical testing with a Deben Microtest 1 kN stage integrated and synchronized with Tescan Vega3 SEM to acquire high resolution image datasets for Digital Image Correlation (DIC) analysis. Dog bone specimens were 3D-printed in different orientation of gauge zone cross-section with respect to the fast laser beam scanning and growth directions. This corresponds to varying local conditions of metal solidification and cooling. Specimens show variation in mechanical properties, namely, Young’s modulus (65…78 GPa), yield stress (80–150 MPa), ultimate tensile strength (115–225 MPa) and elongation at break (0,75–1,4 %). Furthermore, the failure localization and character was altered with the change of gauge cross-section orientation. DIC analysis allowed correct strain evaluation that overcame the load frame compliance effect and helped to identify the unevenness of deformation distribution (plasticity waves) that ultimately resulted in exceptionally high strain localization near the ultimate failure crack position.

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Eugene S. Statnik ◽  
Kirill V. Nyaza ◽  
Alexey I. Salimon ◽  
Dmitry Ryabov ◽  
Alexander M. Korsunsky

Currently, 3D-printed aluminium alloy fabrications made by selective laser melting (SLM) offer a promising route for the production of small series of custom-designed support brackets and heat exchangers with complex geometry and shape and miniature size. Alloy composition and printing parameters need to be optimised to mitigate fabrication defects (pores and microcracks) and enhance the parts’ performance. The deformation response needs to be studied with adequate characterisation techniques at relevant dimensional scale, capturing the peculiarities of micro-mechanical behaviour relevant to the particular article and specimen dimensions. Purposefully designed Al-Si-Mg 3D-printable RS-333 alloy was investigated with a number of microscopy techniques, including in situ mechanical testing with a Deben Microtest 1-kN stage integrated and synchronised with Tescan Vega3 SEM to acquire high-resolution image datasets for digital image correlation (DIC) analysis. Dog bone specimens were 3D-printed in different orientations of gauge zone cross-section with respect to the fast laser beam scanning and growth directions. This corresponded to the varying local conditions of metal solidification and cooling. Specimens showed variation in mechanical properties, namely Young’s modulus (65–78 GPa), yield stress (80–150 MPa), ultimate tensile strength (115–225 MPa) and elongation at break (0.75–1.4%). Furthermore, the failure localisation and character were altered with the change in gauge cross-section orientation. DIC analysis allowed correct strain evaluation that overcame the load frame compliance effect and helped to identify the unevenness of deformation distribution (plasticity waves), which ultimately resulted in exceptionally high strain localisation near the ultimate failure crack position.


2021 ◽  
Vol 27 (2) ◽  
pp. 250-256
Author(s):  
Supriya Koul ◽  
Le Zhou ◽  
Omar Ahmed ◽  
Yongho Sohn ◽  
Tengfei Jiang ◽  
...  

Abstract


2018 ◽  
Vol 24 (S1) ◽  
pp. 1942-1943
Author(s):  
Supriya Koul ◽  
Le Zhou ◽  
Yongho Sohn ◽  
Akihiro Kushima

Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 752-757
Author(s):  
Lukas Weiser ◽  
Marco Batschkowski ◽  
Niclas Eschner ◽  
Benjamin Häfner ◽  
Ingo Neubauer ◽  
...  

Die additive Fertigung schafft neue Gestaltungsfreiheiten. Im Rahmen des Prototypenbaus und der Kleinserienproduktion kann das Verfahren des selektiven Laserschmelzens genutzt werden. Die Verwendung in der Serienproduktion ist bisher aufgrund unzureichender Bauteilqualität, langen Anlaufzeiten sowie mangelnder Automatisierung nicht im wirtschaftlichen Rahmen möglich. Das Projekt „ReAddi“ möchte eine erste prototypische Serienfertigung entwickeln, mit der additiv gefertigte Bauteile für die Automobilindustrie wirtschaftlich produziert werden können. Additive manufacturing (AM) offers new freedom of design. The selective laser-powderbed fusion (L-PBF) process can be used for prototyping and small series production. So far, it has not been economical to use it on a production scale due to insufficient component quality, long start-up times and a lack of automation. The project ReAddi aims to develop a first prototype series production to cost-effectively manufacture 3D-printed components for the automotive industry.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 125
Author(s):  
Martino Colonna ◽  
Benno Zingerle ◽  
Maria Federica Parisi ◽  
Claudio Gioia ◽  
Alessandro Speranzoni ◽  
...  

The optimization of sport equipment parts requires considerable time and high costs due to the high complexity of the development process. For this reason, we have developed a novel approach to decrease the cost and time for the optimization of the design, which consists of producing a first prototype by 3D printing, applying the forces that normally acts during the sport activity using a test bench, and then measuring the local deformations using 3D digital image correlation (DIC). The design parameters are then modified by topological optimization and then DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts has shown a good agreement with that of the injection-molded ones. The deformation measured with DIC are also well correlated with those provided by finite element method (FEM) analysis, and therefore DIC analysis proves to be a powerful tool to validate FEM models.


Author(s):  
VVS Bhaskara Raju ◽  
Sambi Reddy Sevanam ◽  
Ananda Babu Varadala ◽  
Suresh Chitturi

2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


Sign in / Sign up

Export Citation Format

Share Document