scholarly journals Origins of the Time, Mass, Energy, Wave Function, Electric Charges, and Magnetic Monopoles

Author(s):  
Jae-Kwang Hwang

Origins of the time, mass, electric charges and magnetic monopoles are explained. The energies, electric charges and magnetic charges of the particles are defined as E = cDtDV and |q| = cDt = E/DV, and |qm| = c2Dt, respectively, for the 3-D quantized spaces warped along the time axis direction of ct in the 4-D Euclidean space. The energy (or mass) and charges (or electric charges and magnetic charges) are the vectors along the time axis of ct in the 4-D Euclidean space. This new concept is closely connected to the wave function of the quantum mechanics. The electric charges, magnetic charges and energies have the property of the space direction independence. Magnetic monopoles (charges) are the force carrying bosons with the inside electric field time loop. Electric monopoles are the elementary fermions. Photon space fluctuations are explained with the quantized magnetic charges.


2019 ◽  
Vol 15 ◽  
pp. 6039-6055
Author(s):  
Antonio Puccini

We learn from Quantum Mechanics that the observation of the microscopic world, the measurement (M) of a quantum object, i.e. a particle, inexorably modifies the physical system we wish to examine. What happens is that with the M it takes place a reduction of the state vectors, that is the ‘wave function collapse’ of the measured particle. Why does it happen? No one knows. The enigma of the so-called Measurement Paradox, in our opinion, could be solved if we considered that the light quantum(LQ), as suggested by the Principle of Equivalence Mass-Energy, carries out a dynamic-mass equivalent to its energy. The LQ is indispensable to carry out a M.  No M can be carried out without using the quantum of light. Calculus show that a photon of the optic band hits an electron with a momentum bigger than the mass of the electron itself. This may explain why the M induces the implosion of the quantum object observed, together with the collapse of its wave function, giving rise to the Measurement Paradox.



2021 ◽  
Author(s):  
Jae-Kwang Hwang

Abstract We live in the 4-D Euclidean space. The 4th dimension is assigned as the absolute time (ct) axis and energy axis (cPt = E0) based on 4-dimensional Euclidean space. This 4th dimension can be indirectly felt through the observable relative time (ctl) and observable total energy (cPtl = E). The space-time distance is d(x1x2x3x4) = ctl. The modified Lorentz transformations are introduced by the time-matching of the absolute times in the 4-D Euclidean space. The size of x’ (or Dx’) of the moving object is expanded to the size of x = gx’ (or Dx = gDx’). These modified Lorentz transformations are approximated to the Lorentz transformations as t à tl when v/c << 1 and to the Galilean transformations as v/c is close to zero. The relative time (tl) and energy (E) are defined as the 4-dimensional distance and 4-dimensional volume, respectively. The geometrical space-time shape has the (x1,x2,x3,ct) coordinate system with the metric signature of (+ + + +) but not the (x1,x2,x3,ctl) coordinate system with the metric signature of (+ - - -). Therefore, d(x1x2x3x4)2 = (ctl)2 = (ct)2 +x2 = x12 + x22 + x32 + x42 and V(x1x2x3x4) = E = mc2 = D(ct)Dx1Dx2Dx3 from (x1,x2,x3,x4) of the geometrical space-time shape. The warped shape can be described as the wave function of the quantum mechanics. The instant force action, twin paradox and possible space travel are explained by the absolute time and wave function collapse of the modified Lorentz transformations and quantum mechanics.



2019 ◽  
Author(s):  
Vitaly Kuyukov

The nature of quantum mechanics has various interpretations. In this paper we consider the hypothesis of quantum Darwinism. Quantum theory is closely connected with the concept of information. Perhaps there is an analogue of the genetic code for quantum Darwinism. Here the attempt of the genetic formulation of quantum gravity. It is based on the idea of the quantum genetic spiral the space-time, directed along the time axis. Such a mathematical form exists in braid theory. Matter how information is coded in the genetic structure of space-time. Natural and artificial selection of quantum Darwinism leads to the collapse of the wave function and the identification of a dominant gene.



2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.



2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential



2017 ◽  
Vol 26 (03) ◽  
pp. 1730008 ◽  
Author(s):  
Stephen D. H. Hsu

We explain the measure problem (cf. origin of the Born probability rule) in no-collapse quantum mechanics. Everett defined maverick branches of the state vector as those on which the usual Born probability rule fails to hold — these branches exhibit highly improbable behaviors, including possibly the breakdown of decoherence or even the absence of an emergent semi-classical reality. Derivations of the Born rule which originate in decision theory or subjective probability (i.e. the reasoning of individual observers) do not resolve this problem, because they are circular: they assume, a priori, that the observer occupies a non-maverick branch. An ab initio probability measure is sometimes assumed to explain why we do not occupy a maverick branch. This measure is constrained by, e.g. Gleason’s theorem or envariance to be the usual Hilbert measure. However, this ab initio measure ultimately governs the allocation of a self or a consciousness to a particular branch of the wave function, and hence invokes primitives which lie beyond the Everett wave function and beyond what we usually think of as physics. The significance of this leap has been largely overlooked, but requires serious scrutiny.



Author(s):  
David Wallace

Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made difficult by the fact that the ‘measurement problem’, as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This paper has two goals: firstly (§§1–2), to present an account of how quantum measurements are actually dealt with in modern physics (hint: it does not involve a collapse of the wave function) and to state the measurement problem from the perspective of that account; and secondly (§§3–4), to clarify what role decoherence plays in modern measurement theory and what effect it has on the various strategies that have been proposed to solve the measurement problem.



2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Antonio Accioly ◽  
Wallace Herdy

The equivalence principle (EP) and Schiff’s conjecture are discussed en passant, and the connection between the EP and quantum mechanics is then briefly analyzed. Two semiclassical violations of the classical equivalence principle (CEP) but not of the weak one (WEP), i.e., Greenberger gravitational Bohr atom and the tree-level scattering of different quantum particles by an external weak higher-order gravitational field, are thoroughly investigated afterwards. Next, two quantum examples of systems that agree with the WEP but not with the CEP, namely, COW experiment and free fall in a constant gravitational field of a massive object described by its wave-function Ψ, are discussed in detail. Keeping in mind that, among the four examples focused on in this work only COW experiment is based on an experimental test, some important details related to it are presented as well.



1969 ◽  
Vol 1 (17) ◽  
pp. 908-910 ◽  
Author(s):  
F. Selleri




Sign in / Sign up

Export Citation Format

Share Document