scholarly journals Molecular Docking and Biophysical Studies for Antiproliferative Assessment of Synthetic Pyrazolopyrimidinones Tethered with Hydrazide-Hydrazones

Author(s):  
Mabrouk Horchani ◽  
Gerardo Della Sala ◽  
Alessia Caso ◽  
Federica D’Aria ◽  
Germana Esposito ◽  
...  

Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In search for therapeutic alternatives to treat the cancer disease, a se-ries of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a-h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in EtOH, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evalu-ated for their binding interactions with two well-known anticancer targets, namely the epider-mal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. CD experi-ments suggested 5a as a stabilizer agent of the G-quadruplex from the KRAS oncogene promot-er. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hy-drazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.

2021 ◽  
Vol 22 (5) ◽  
pp. 2742
Author(s):  
Mabrouk Horchani ◽  
Gerardo Della Sala ◽  
Alessia Caso ◽  
Federica D’Aria ◽  
Germana Esposito ◽  
...  

Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a–h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.


Author(s):  
Riska Prasetiawati ◽  
Meilia Suherman ◽  
Benny Permana ◽  
Rahmawati Rahmawati

It is presumed that antiproliferative activity of anthocyanidin has interaction with Epidermal Growth Factor Receptor (EGFR) which has effect on lung cancer cell growth. This study aimed to observe the interaction between anthocyanidin and EGFR and to find out prediction, absorption, distribution activities as well as anthocyanidin toxicity compared to Gefitinib, an EGFR inhibitor. All test compounds were optimized with Autodock Tools®, then molecular docking simulations and predictions of absorption, distribution and toxicity were carried out. Malvidin was stated to meet the Lipinski's Rule of Five, indicating good bioavailability. Result of molecular docking simulation showed that malvidin had better affinity against EGFR than Gefitinib. Molecular docking visualization result showed that malvidin had interaction with amino acid residue such as Met793, Gln791, Leu718, Thr854, Asp855 and Lys745. Absorption and distribution predictions included percentage scores of Human Intestinal Absorption (HIA), human colon adenocarcinoma (Caco-2), and Plasma Protein Binding. Toxicity test revealed that malvidin was mutagenic compound but not carcinogenic one. The findings indicated that malvidin was potential to be an anti lung cancer candidate through EGFR inhibition.Keywords: Antiproliferative, Anthocyanidin, Epidermal Growth Factor Receptor, Molecular Docking


2018 ◽  
Author(s):  
Yuxiang Wang ◽  
Jie Yang ◽  
Wei Wu ◽  
Rachna Shah ◽  
Carla Danussi ◽  
...  

AbstractMutational inactivation of ATRX (α-thalassemia mental retardation X-linked) represents a defining molecular alteration in large subsets of malignant glioma. Yet the pathogenic consequences of ATRX deficiency remain unclear, as do tractable mechanisms for its therapeutic targeting. Here we report that ATRX loss in isogenic glioma model systems induces replication stress and DNA damage by way of G-quadruplex (G4) DNA secondary structure. Moreover, these effects are associated with the acquisition of disease-relevant copy number alterations over time. We then demonstrate, both in vitro and in vivo, that ATRX deficiency selectively enhances DNA damage and cell death following chemical G4 stabilization. Finally, we show that G4 stabilization synergizes with other DNA-damaging therapies, including ionizing radiation, in the ATRX-deficient context. Our findings reveal novel pathogenic mechanisms driven by ATRX deficiency in glioma, while also pointing to tangible strategies for drug development.


Author(s):  
Sushmitha Bujji ◽  
Praveen Kumar E ◽  
Sree Kanth Sivan ◽  
Manjunatha DH ◽  
Subhashini N.J.P.

Background: Cancer disease is making a serious concern globally. Global cancer occurrence is steadily increasing every year. There is always a persistent need to develop new anticancer drugs with reduced side effects or act synergistically with the existing chemotherapeutics. Objective: Benzoxazoles are fused bicyclic nitrogen and oxygen-containing heterocyclic compounds and are considered biologically privileged scaffolds. We designed a synthetic route to link the benzoxazoles with oxadiazoles resulting in a better pharmacophore for anticancer activity. Methods: A series of novel amide derivatives of benzoxazole linked 1,3,4-oxadiazoles (10a-j) were synthesized and characterized by 1H NMR, 13C NMR, and mass spectroscopic techniques. The biological properties of the compounds were screened in vitro against four different tumor cell lines. Results: The results suggest that the compound 10b having 3,4,5-trimethoxy substitution on the phenyl ring exhibited potent anticancer activity in three cell lines (A549 = 0.13 ± 0.014 µM, MCF-7 = 0.10 ± 0.013 µM and HT-29 = 0.22 ± 0.017 µM). Notably, among the synthesized derivatives, compounds 10b, 10c, 10f, 10g, and 10i exhibited potent anticancer activity than the control IC50 in the range of 0.11 ± 0.02 to 0.93 ± 0.034 µM. Molecular docking simulation results showed compounds were stabilized by hydrogen bond and π-π interactions with the protein. Conclusion: The molecules showed comparable binding affinities with standard Combretastatin-A4. The present research work is preliminary and needs further studies to take the synthesized compounds to the next level in the cancer research field.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 870
Author(s):  
Joanna Matysiak ◽  
Alicja Skrzypek ◽  
Monika Karpińska ◽  
Kamila Czarnecka ◽  
Paweł Szymański ◽  
...  

In the present study, new 4-(1H-benzimidazol-2-yl)-benzene-1,3-diols, modified in both rings, have been synthesized and their efficacies as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors have been determined. The modified Ellman’s spectrophotometric method was applied for the biological evaluation. The compounds showed strong (IC50 80–90 nM) AChE and moderate (IC50 5–0.2 µM) BuChE inhibition in vitro. Some compounds were effective toward AChE/BuChE, exhibiting high selectivity ratios versus BuChE, while the other compounds were active against both enzymes. The structure–activity relationships were discussed. The compounds inhibited also in vitro self-induced Aβ(1–42) aggregation and exhibited antioxidant properties. The docking simulations showed that the benzimidazoles under consideration interact mainly with the catalytic site of AChE and mimic the binding mode of tacrine.


2020 ◽  
Vol 11 (3) ◽  
pp. 436-444 ◽  
Author(s):  
Kleoniki Giannousi ◽  
George Geromichalos ◽  
Dionysia Kakolyri ◽  
Stefanos Mourdikoudis ◽  
Catherine Dendrinou-Samara

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4238
Author(s):  
Sergiy M. Kovalenko ◽  
Oleksandr G. Drushlyak ◽  
Svitlana V. Shishkina ◽  
Irina S. Konovalova ◽  
Illia O. Mariutsa ◽  
...  

Consecutive alkylation of 4-hydroxy-2-thioxo-1,2-dihydroquinoline-3-carboxylate by CH3I has been investigated to establish regioselectivity of the reaction for reliable design and synthesis of combinatorial libraries. In the first stage, the product of S-methylation-methyl 4-hydroxy-2-(methylthio)quinoline-3-carboxylate was obtained. The subsequent alkylation with CH3I led to the formation of both O- and N-methylation products mixture-methyl 4-methoxy-2-(methylthio)quinoline-3-carboxylate and methyl 1-methyl-2-(methylthio)-4-oxo-1,4-dihydroquinoline-3-carboxylate with a predominance of O-methylated product. The structure of synthesized compounds was confirmed by means of elemental analysis, 1H-NMR, 13C-NMR, LC/MS, and single-crystal X-ray diffraction. The quantum chemical calculations of geometry and electron structure of methyl 4-hydroxy-2-(methylthio)quinoline-3-carboxylate’s anion were carried out. According to molecular docking simulations, the studied compounds can be considered as potent inhibitors of Hepatitis B Virus replication. Experimental in vitro biological studies confirmed that studied compounds demonstrated high inhibition of HBV replication in 10 µM concentration.


2013 ◽  
Vol 42 (5) ◽  
pp. 3272-3285 ◽  
Author(s):  
Sarah Eddy ◽  
Amit Ketkar ◽  
Maroof K. Zafar ◽  
Leena Maddukuri ◽  
Jeong-Yun Choi ◽  
...  

Abstract The Y-family DNA polymerase Rev1 is required for successful replication of G-quadruplex DNA (G4 DNA) in higher eukaryotes. Here we show that human Rev1 (hRev1) disrupts G4 DNA structures and prevents refolding in vitro. Nucleotidyl transfer by hRev1 is not necessary for mechanical unfolding to occur. hRev1 binds G4 DNA substrates with Kd,DNA values that are 4–15-fold lower than those of non-G4 DNA substrates. The pre-steady-state rate constant of deoxycytidine monophosphate (dCMP) insertion opposite the first tetrad-guanine by hRev1 is ∼56% as fast as that observed for non-G4 DNA substrates. Thus, hRev1 can promote fork progression by either dislodging tetrad guanines to unfold the G4 DNA, which could assist in extension by other DNA polymerases, or hRev1 can prevent refolding of G4 DNA structures. The hRev1 mechanism of action against G-quadruplexes helps explain why replication progress is impeded at G4 DNA sites in Rev1-deficient cells and illustrates another unique feature of this enzyme with important implications for genome maintenance.


2015 ◽  
Vol 6 ◽  
Author(s):  
Jonathan D. Williams ◽  
Sara Fleetwood ◽  
Alexandra Berroyer ◽  
Nayun Kim ◽  
Erik D. Larson

Sign in / Sign up

Export Citation Format

Share Document