scholarly journals Current Status, Scenario, and Prospective of Renewable Energy in Algeria: A Review

Author(s):  
Younes Zahraoui ◽  
M. Reyasudin Basir Khan ◽  
Ibrahim Al Hamrouni ◽  
Saad Mekhilef ◽  
Mahrous Ahmed

Energy demand has been overgrowing in developing countries. Moreover, the fluctuation of fuel prices is a primary concern faced by many countries that highly rely on conventional power generation to meet the load demand. Hence, the need to use alternative resources such as renewable energy is crucial to mitigate fossil fuel dependency alongside the reduction of Carbon Dioxide emission. Algeria’s being the largest county in Africa has rapid growth in energy demand since the past decade due to the significant increase of residential, commercial, and industry sectors. Currently, the hydrocarbon-rich nation highly dependent on fossil fuels for electricity generation, where renewable energy only has a small contribution to the country’s energy mix. However, the country has massive potential for renewable energy generations such as solar, wind, biomass, geothermal, and hydropower. Therefore, the government aims to diversify away from fossil fuel and promoting renewable energy generations through policies and renewable energy-related programs. The country’s Renewable Energy and Energy Efficiency Development Plan focuses on large scale solar, wind generation as well as geothermal and biomass technologies. This paper provides an update on the current energy position and renewable energy status in Algeria. Moreover, this paper discusses RE policies and programs that aim to increase the country’s renewable energy generation and its implementation status.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2354
Author(s):  
Younes Zahraoui ◽  
M. Reyasudin Basir Khan ◽  
Ibrahim AlHamrouni ◽  
Saad Mekhilef ◽  
Mahrous Ahmed

Energy demand has been overgrowing in developing countries. Moreover, the fluctuation of fuel prices is a primary concern faced by many countries that highly rely on conventional power generation to meet the load demand. Hence, the need to use alternative resources, such as renewable energy, is crucial in order to mitigate fossil fuel dependency, while ensuring reductions in carbon dioxide emissions. Algeria—being the largest county in Africa—has experienced a rapid growth in energy demand over the past decade due to the significant increase in residential, commercial, and industry sectors. Currently, the hydrocarbon-rich nation is highly dependent on fossil fuels for electricity generation, with renewable energy only having a small contribution to the country’s energy mix. However, the country has massive potential for renewable energy generation, such as solar, wind, biomass, geothermal, and hydropower. Therefore, the government aims to diversify away from fossil fuels and promote renewable energy generation through policies and renewable energy-related programs. The country’s Renewable Energy and Energy Efficiency Development Plan focuses on large scale solar, wind generation as well as geothermal and biomass technologies. This paper provides an update on the current energy position and renewable energy status in Algeria. Moreover, this paper discusses renewable energy (RE) policies and programs that aim to increase the country’s renewable energy generation and its implementation status.


2021 ◽  
Author(s):  
K.S.L. Mendis ◽  
◽  
K.G.A.S. Waidyasekara ◽  
S.S.C. Ginthotavidana ◽  
◽  
...  

The escalation of global energy demand has enhanced the interest on renewable energy technologies worldwide. The reliance of a single energy source has become problematic, and hybrid renewable energy technology has been identified as a feasible solution. Producing energy to limitless increasing demand is a challenging issue faced by Sri Lanka nowadays. Although, there are some studies carried out for renewable energy systems, solar-wind based hybrid renewable systems is an understudied area in Sri Lankan context. Hence, this paper aims to explore the applicability of hybrid solar-wind renewable energy generation approach for Sri Lanka. The study follows a qualitative approach with semi structured interviews from eight industrial experts, and manual content analysis technique was used for data analysis. The paper discussed the current installation practices of solar and wind technologies, applicability of hybrid solar and wind renewable energy systems and national level contribution for hybrid systems. Finally, a validated model was proposed to implement hybrid renewable energy generation systems for Sri Lanka.


Author(s):  
Kostadin Fikiin ◽  
Borislav Stankov

Refrigerated warehouses are large energy consumers and account for a significant portion of the global energy demand. Nevertheless the opportunity for integration of renewable resources in the energy supply of large cold storage facilities is very often unjustifiably neglected, whereas the employment of renewable energy for many other industrial and comfort applications is actively promoted and explored. In that context, the purpose of this chapter is to bridge the existing gap by raising the public awareness of stakeholders, researchers, practicing engineers and policy makers about the availability of a number of smart engineering solutions and control strategies to exploit renewables of different nature (solar, wind, geothermal, biogas, etc.) in the food storage sector, as well as by calling the readers' attention to the specialised knowledge in the matter, which has been published so far.


Author(s):  
Bahareh Heidary ◽  
Teymour Tavakoli ◽  
Barat Ghobadian ◽  
Ramin Roshandel

Introduction: Water, energy, and the environment are three important elements of sustainable development. Production of potable water using desalination technologies powered by renewable energy systems could help solve water scarcity in remote areas with shortages of water or conventional energy sources, or in large cities with air pollution. Hybridization of solar and wind could increase the sustainability and availability of renewable energy sources and reduce energy costs. Additionally, hybridization of reverse osmosis (RO) and MSF could increase efficiency and desalinated water quality and decrease desalinated water cost. Materials and Methods: The research method in this paper is based on modeling, computer simulation, and optimization with MATLAB software, and manufacturing and evaluating the plant at the Tarbiat Modares University Renewable Energy Laboratory. Results: The process of manufacturing the MSF system, solar panel structure, and wind turbine was explained and modeling and optimization results were presented. Testing results of the plant were mentioned, as were the produced power of wind turbine simulated and plant performance evaluated under the environmental conditions of the Tehran region. The rate of fresh water production under changing feed water salinity was evaluated and the real costs of fresh water produced ($/m3) were estimated. At the end of this section, model results and test results were compared. Conclusion: Hybridization of RO and MSF systems with wind and solar energy resources led to increased system reliability and flexibility and higher produced drinking water quality. The desalinated water cost was 1.35 $/m3 in theory and 1.5 $/m3 for actual conditions. Hybridization of wind, solar, RO, and MSF showed proved the best choices to minimize water cost compared to fossil fuel RO or MSF, wind RO, wind MSF, solar RO, solar MSF, or fossil fuel RO-MSF. Hybridization of RO and MSF would result in better economics and operation characteristics than those corresponding to MSF. Water cost can be reduced by 23 to 26% of that of a sole MSF process and the amount of desalinated water produced by the hybrid RO-MSF system is much greater than that of MSF. A comparison of theory outputs and experimental test results showed very good agreement between measured and model data. The test results of the manufactured hybrid solar-wind RO-MSF justified theory results.


2021 ◽  
Author(s):  
Ali Akbar Eftekhari

Denmark is a pioneer in the large-scale extraction of the sustainable energy of the wind, especially in theelectricity sector which supplies most of the Danish electricity consumption. A combination of these recentDanish successes, and the increased societal demand for the reduction of carbon dioxide emission in light ofthe recent IPCC report, has created the expectation of a fast transition from fossil fuel to sustainable energyresources in all energy sectors. Although this transition is inevitable due to the unsustainable nature of fossilfuels and the declining Danish oil and gas production, there is still an ongoing discussion, sometimessupported by qualitative evidence, on its possibility, extent, and urgency.This paper that is inspired by a true story of an unsuccessful date between a petroleum engineeringcolleague and a Danish environmentalist has a quantitative look at the future energy balance of Denmark byestimating the future energy consumption of a typical Dane and comparing it with the available renewableand non-renewable energy resources. It also suggests and compares different scenarios for a self-sufficientDenmark with 100% renewable energy, considering the available land and shallow sea and the footprint ofthe energy extraction and storage methods in Denmark. The results show that if the intermittency problem ofthe wind energy is addressed in the future, there is still a large demand, mostly from the transport sector, forliquid fuels with high energy-density, which needs to be addressed by a paradigm shift in transporttechnologies or large scale implementation of power to fuel technologies with a sustainable carbon source.


2022 ◽  
Vol 30 (6) ◽  
pp. 1-38
Author(s):  
Tat Dat Bui ◽  
Ming-Lang Tseng

This study provides a data-driven analysis that illustrates a clear renewable energy depiction in sustainable energy security and unveils the regional issues due to the literature solely occupies energy security concept in the descriptions view, and renewable energy differences related to regions are rarely discussed. A hybrid method is proposed to valid those indicators and shows the trend of future studies. This study enriches the challenges and opportunities by contributing to understand the fundamental knowledge of renewable energy in sustainable energy security frontier, conveyance directions for future study and investigation, and assessment on global renewable energy position and regional disparities. There are valid 19 indicators, in which energy demand, energy policy, renewable resources, smart grid, and uncertainty representing the future trends. World regional comparison includes 115 countries/territories and categorized into five geographical regions. The result shows that those indicators have addressed different issues in the world regional comparison.


2020 ◽  
Vol 1 (1) ◽  
pp. 33-47
Author(s):  
Tran Viet Dung

AbstractVietnam has experienced an economic growth accompanied by increasing energy demand and inadequate supplies. Like most developing countries, the increased inefficient use of energy in Vietnam leads to increased greenhouse gas emissions and high energy costs for consumers. Also, the traditional sources of energy are not sufficient to satisfy the demand of the economic sectors.With the negative impact of climate change on water resources and the depletion of coal, oil and gas reserves, Vietnam must diversify and integrate other forms of renewable energies into its energy mix. The efficient use of renewable energy resources can boost economic development. Thus, the policies for endorsing renewable energies and energy efficiency are playing a vital role in ensuring the sustainable development for Vietnam’s future. This paper examines the legal and policy framework influencing the deployment of renewable energies and energy efficiency in Vietnam. The paper also attempts to identify major barriers to a large scale deployment of renewable energies and energy efficiency technologies and offers some possible solutions.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 311
Author(s):  
Joo Young Lee ◽  
Su Hyeon Han

This paper looks at the current state of multilateral development banks (MDBs) for climate change measures and the funding status of those invested in mitigation technology in order to briefly review the current outcome of the technology transfer and financial support. In other words, the aim of this study is to collect and analyze information about the current status of total investment in the field of technology for mitigating GHGs (Greenhouse Gases) from MDBs and identify implications of the status. In this study, a screening technique has been used three times to make a database for project information in the field of mitigation of climate change. So far, based on the finalized DB (Database), mitigation technology projects supported by MDBs have been investigated; based on the result, a connected analysis has been conducted between MDBs, mitigation technology, and countries. According to the derived current status, project support in renewable energy and energy demand areas turned out to be the highest at 75% of the entire mitigation technology. Rather than the renewable energy and energy demand areas where climate technology projects have frequently been performed throughout the world, it was confirmed that long-term climate technology projects for GHG fixation were being performed. According to the results of comparison and analysis of countries with high GHG emissions and their centrality, centrality turned out to be high in the field of GHG fixation in China, the country with the highest GHG emissions. This seems to indicate that countries emitting a substantial amount of GHGs will invest more on projects in the field of GHG fixation as well as on projects on renewable energy. Thus, this study is expected to contribute to understanding the trends of climate technology projects for coping with climate change and using them in establishing future policies on climate technology. In addition, it is expected to be used as a reference for countries with insufficient investment in climate technology despite the high Climate Risk Index (CRI).


2017 ◽  
pp. 721-770
Author(s):  
Kostadin Fikiin ◽  
Borislav Stankov

Refrigerated warehouses are large energy consumers and account for a significant portion of the global energy demand. Nevertheless the opportunity for integration of renewable resources in the energy supply of large cold storage facilities is very often unjustifiably neglected, whereas the employment of renewable energy for many other industrial and comfort applications is actively promoted and explored. In that context, the purpose of this chapter is to bridge the existing gap by raising the public awareness of stakeholders, researchers, practicing engineers and policy makers about the availability of a number of smart engineering solutions and control strategies to exploit renewables of different nature (solar, wind, geothermal, biogas, etc.) in the food storage sector, as well as by calling the readers' attention to the specialised knowledge in the matter, which has been published so far.


Sign in / Sign up

Export Citation Format

Share Document