scholarly journals Acute Low-intensity Treadmill Running Induces Intestinal Glucose Transporters via GLP-2 in Mice

Author(s):  
Kai Aoki ◽  
Takuji Suzuki ◽  
Fang Hui ◽  
Takuro Nakano ◽  
Koki Yanazawa ◽  
...  

Exercise affects various organs. However, its effects on nutrient digestion and absorption in the intestinal tract are not well understood. A few studies have reported that exercise training in-creases the expression of carbohydrate digestion and absorption molecules. Exercise was also shown to increase the concentration of blood glucagon like peptide-2(GLP-2), which regulates carbohydrate digestion and absorption in small intestinal epithelium. Therefore, we investigated the effects of exercise on intestinal digestion and absorption molecules and the levels of GLP-2. 6-wk-old of male mice were divided into 2 groups; sedentary (SED) and low-intensity exercise (LEx). LEx mice were required to run on a treadmill (12.5 m/min, 60 min), whereas SED mice rested. All mice were euthanized 1 h after exercise or rest and plasma, jejunum, ileum, and colon were sampled. Samples were analyzed using EIA and immunoblotting. The levels of plasma GLP-2 and the expression of the GLP-2 receptor, sucrase-isomaltase (SI), and glucose transporter (GLUT2) in the jejunum were increased in LEx group. We showed that acute low-intensity exer-cise affects the intestinal carbohydrate digestion and absorption molecules via GLP-2. Our results suggest that exercise might provide new benefits to the small intestine for people with intestinal frailty.

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1735
Author(s):  
Kai Aoki ◽  
Takuji Suzuki ◽  
Fang Hui ◽  
Takuro Nakano ◽  
Koki Yanazawa ◽  
...  

The effects of exercise on nutrient digestion and absorption in the intestinal tract are not well understood. A few studies have reported that exercise training increases the expression of molecules involved in carbohydrate digestion and absorption. Exercise was also shown to increase the blood concentration of glucagon-like peptide-2 (GLP-2), which regulates carbohydrate digestion and absorption in the small intestine. Therefore, we investigated the effects of exercise on the expression of molecules involved in intestinal digestion and absorption, including GLP-2. Six-week-old male mice were divided into a sedentary (SED) and low-intensity exercise (LEx) group. LEx mice were required to run on a treadmill (12.5 m/min, 1 h), whereas SED mice rested. All mice were euthanized 1 h after exercise or rest, and plasma, jejunum, ileum, and colon samples were collected, followed by analysis via IHC, EIA, and immunoblotting. The levels of plasma GLP-2 and the jejunum expression of the GLP-2 receptor, sucrase-isomaltase (SI), and glucose transporter 2 (GLUT2) were higher in LEx mice. Thus, we showed that acute low-intensity exercise affects the expression of molecules involved in intestinal carbohydrate digestion and absorption via GLP-2. Our results suggest that exercise might be beneficial for small intestine function in individuals with intestinal frailty.


2015 ◽  
Vol 118 (6) ◽  
pp. 742-749 ◽  
Author(s):  
Yoshimi Oishi ◽  
Hayato Tsukamoto ◽  
Takumi Yokokawa ◽  
Keisuke Hirotsu ◽  
Mariko Shimazu ◽  
...  

We examined whether a mixed lactate and caffeine compound (LC) could effectively elicit proliferation and differentiation of satellite cells or activate anabolic signals in skeletal muscles. We cultured C2C12 cells with either lactate or LC for 6 h. We found that lactate significantly increased myogenin and follistatin protein levels and phosphorylation of P70S6K while decreasing the levels of myostatin relative to the control. LC significantly increased protein levels of Pax7, MyoD, and Ki67 in addition to myogenin, relative to control. LC also significantly increased follistatin expression relative to control and stimulated phosphorylation of mTOR and P70S6K. In an in vivo study, male F344/DuCrlCrlj rats were assigned to control (Sed, n = 10), exercise (Ex, n = 12), and LC supplementation (LCEx, n = 13) groups. LC was orally administered daily. The LCEx and Ex groups were exercised on a treadmill, running for 30 min at low intensity every other day for 4 wk. The LCEx group experienced a significant increase in the mass of the gastrocnemius (GA) and tibialis anterior (TA) relative to both the Sed and Ex groups. Furthermore, the LCEx group showed a significant increase in the total DNA content of TA compared with the Sed group. The LCEx group experienced a significant increase in myogenin and follistatin expression of GA relative to the Ex group. These results suggest that administration of LC can effectively increase muscle mass concomitant with elevated numbers of myonuclei, even with low-intensity exercise training, via activated satellite cells and anabolic signals.


2005 ◽  
Vol 289 (5) ◽  
pp. H2030-H2038 ◽  
Author(s):  
Craig A. Emter ◽  
Sylvia A. McCune ◽  
Genevieve C. Sparagna ◽  
M. Judith Radin ◽  
Russell L. Moore

Data regarding the effectiveness of chronic exercise training in improving survival in patients with congestive heart failure (CHF) are inconclusive. Therefore, we conducted a study to determine the effect of exercise training on survival in a well-defined animal model of heart failure (HF), using the lean male spontaneously hypertensive HF (SHHF) rat. In this model, animals typically present with decompensated, dilated HF between ∼18 and 23 mo of age. SHHF rats were assigned to sedentary or exercise-trained groups at 9 and 16 mo of age. Exercise training consisted of 6 mo of low-intensity treadmill running. Exercise training delayed the onset of overt HF and improved survival ( P < 0.01), independent of any effects on the hypertensive status of the rats. Training delayed the myosin heavy chain (MyHC) isoform shift from α- to β-MyHC that was seen in sedentary animals that developed HF. Exercise was associated with a concurrent increase in cardiomyocyte length (≈6%), width, and area and prevented the increase in the length-to-width ratio seen in sedentary animals in HF. The increases in proteinuria, plasma atrial natriuretic peptide, and serum leptin levels observed in rats with HF were suppressed by low-intensity exercise training. No significant alterations in sarco(endo)plasmic reticulum Ca2+ ATPase, phospholamban, or Na+/Ca2+ exchanger protein expression were found in response to training. Our results indicate that 6 mo of low-intensity exercise training delays the onset of decompensated HF and improves survival in the male SHHF rat. Similarly, exercise intervention prevented or suppressed alterations in several key variables that normally occur with the development of overt CHF. These data support the idea that exercise may be a useful and inexpensive intervention in the treatment of HF.


Author(s):  
Ghobad Hassanpour ◽  
Hojatollah Nikbakht ◽  
Mohammad Ali Azarbayjani ◽  
Nader Shakeri ◽  
Hossein Abed Natanzi

Objective: Diabetes is a metabolic disease which is linked to increased physical disabilities and muscle tissue damage. The aim of this study was to investigate the effect of interval and continued exercises with crocin on Bax/Bcl-2 ratio in diabetic obese rats. Materials and Methods: In this clinical trial study, 56 adult diabetic rats (high-fat diet and venous injection of streptozotocin) were selected and randomly assigned to groups (1), intense interval exercises (2), low intensity exercise (3), intense interval exercise with crocin consumption, (4) Low intensity exercise with crocin consumption, (5) Crocin consumption, (6) sham and (7) control were divided. Intense interval and low intensity exercise groups lasted for 8 weeks, three sessions per week, with intensity of 80 to 85 and 50 to 55 percent of maximum treadmill running, and crocin consumption groups for 8 weeks per day, mg / kg 25 crocin were taken peritoneal. To analyze the research hypotheses, Kolmogorov- Smirnov tests, independent T- tests and two-way multi-variable analysis of variance were used along with Benferron's comparison method. It should be noted that the significance level in all measurements was considered to be P -value≤ 0.05. Results: Results showed that exercise ( P -value: 0.12) and crocin ( P value: 0.10) consumption had no significant effect on Bax/Bcl-2 gene expression in diabetic rats. Also interaction of exercise and crocin consumption on Bax/Bcl-2 was not significant ( P -value: 0.12). Conclusion: It appears that exercise and crocin consumption have not interaction effect on improvement of Bax / Bcl-2 ratio in diabetic rats.


1997 ◽  
Vol 272 (6) ◽  
pp. E1050-E1058 ◽  
Author(s):  
P. L. Brubaker ◽  
A. Izzo ◽  
M. Hill ◽  
D. J. Drucker

Glucagon-like peptide-2 (GLP-2) stimulates small intestinal growth through induction of intestinal epithelial proliferation. To examine the physiology of GLP-2-induced bowel, mice were treated with GLP-2 (2.5 micrograms) or vehicle for 10 days. Small intestinal weight increased to 136 +/- 2% of controls in GLP-2-treated mice, in parallel with 1.4 +/- 0.1- and 1.9 +/- 0.5-fold increments in duodenal RNA and protein content, respectively (P < 0.05-0.001). Similarly, the activities of duodenal maltase, sucrase, lactase, glutamyl transpeptidase, and dipeptidyl-peptidase IV (215 +/- 28% of controls; P < 0.001) were increased by GLP-2. Oral or duodenal administration of glucose or maltose did not reveal any differences in the ability of GLP-2-treated mice to absorb these nutrients, possibly because of decreases in expression of the glucose transporters sodium-dependent glucose transporter-1 (SGLT-1) and GLUT-2. In contrast, absorption of leucine plus triolein was increased after duodenal administration in GLP-2-treated mice (P < 0.01-0.001). Finally, GLP-2 did not alter other markers of intestinal or pancreatic gene expression, including levels of mRNA transcripts for ornithine decarboxylase, multidrug resistance gene, amylase, proglucagon, proinsulin, and prosomatostatin. Thus induction of intestinal growth by GLP-2 in wild-type mice results in a normal-to-increased capacity for nutrient digestion and absorption in vivo.


2009 ◽  
Vol 296 (1) ◽  
pp. E47-E55 ◽  
Author(s):  
Shinji Miura ◽  
Yuko Kai ◽  
Yasutomi Kamei ◽  
Clinton R. Bruce ◽  
Naoto Kubota ◽  
...  

A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of α1-AMPK (α1-AMPK-DN) in skeletal muscle and subjected to treadmill running. α1-AMPK-DN mice exhibited a 50% reduction in α1-AMPK activity and almost complete loss of α2-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, α1-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between α1-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in α1-AMPK-DN mice, indicating that α1-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased α2-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.


2006 ◽  
Vol 7 (3) ◽  
pp. 163-174 ◽  
Author(s):  
Myoung-Ae Choe ◽  
Gyeong Ju An ◽  
Yoon-Kyong Lee ◽  
Ji Hye Im ◽  
Smi Choi-Kwon ◽  
...  

This study examined the effects of daily low-intensity exercise following acute stroke on mass, Type I and II fiber cross-sectional area, and myofibrillar protein content of hind-limb muscles in a rat model. Adult male Sprague-Dawley rats were randomly assigned to 1 of 4 groups (n = 7-9 per group): stroke (occlusion of the right middle cerebral artery [RMCA]), control (sham RMCA procedure), exercise, and stroke-exercise. Beginning 48 hours post-stroke induction/sham operation, rats in the exercise group had 6 sessions of exercise in which they ran on a treadmill at grade 10 for 20 min/day at 10 m/min. At 8 days poststroke, all rats were anesthetized and soleus, plantaris, and gastrocnemius muscles were dissected from both the affected and unaffected sides. After 6 sessions of exercise following acute ischemic stroke, the stroke-exercise group showed the following significant (p < .05) increases compared to the stroke-only group: body weight and dietary intake, muscle weight of affected soleus and both affected and unaffected gastrocnemius muscle, Type I fiber cross-sectional area of affected soleus and both affected and unaffected gastrocnemius muscle, Type II fiber cross-sectional area of the unaffected soleus, both affected and unaffected plantaris and gastrocnemius muscle, Type II fiber distribution of affected gastrocnemius muscle, and myofibrillar protein content of both affected and unaffected soleus muscle. Daily low-intensity exercise following acute stroke attenuates hind-limb muscle atrophy in both affected and unaffected sides. The effects of exercise are more pronounced in the soleus and gastrocnemius as compared to the plantaris muscle.


Author(s):  
Eun Mi Jang ◽  
So Hyun Park

(1) Background—The application of neuromuscular electrical stimulation (NMES) combined with low-intensity exercise to the elderly can be more efficient than low-intensity exercise only in terms of delaying the loss of muscle mass. We aimed to assess the adjunct of NMES to low-intensity lower limb strengthening exercise to prevent falls in frail elderly for a relatively short period of 4 weeks. (2) Methods—Thirty elderly women aged 65 or above were randomly categorized into three groups: control group (CON, n = 8), exercise group (EX, n = 10), and NMES with exercise group (EX + NMES, n = 9). The exercise group took part in a lower limb strengthening exercise program for one hour three times a week for four weeks. Furthermore, the NMES with exercise group had added NMES stimulation when exercising. The limbs’ muscle mass, body fat mass, calf circumference, grip force, five times sit-to-stand test, timed up-and-go test (TUG), one-leg stand test, and Y-balance test (YBT) were evaluated at baseline and 4 weeks after. (3) Results—Comparisons between the three groups showed that the TUG was significantly decreased and the YB was significantly increased in NMES with exercise group (p < 0.05). (4) Conclusions—These results suggested that a combination of NMES stimulation and exercises was more helpful in strengthening balance than exercises alone in the short term.


2021 ◽  
pp. 1-11
Author(s):  
K. Itani ◽  
J. Ø. Hansen ◽  
B. Kierończyk ◽  
A. Benzertiha ◽  
P. P. Kurk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document