scholarly journals Metformin Inhibits Esophageal Squamous Cell Carcinoma Viability and Mobility in vitro through Down-regulation of Long Non-coding RNA CCAT1 and SPRY4-IT1

Author(s):  
Min Zhang ◽  
Jixia Wang ◽  
Yichun Li ◽  
Lei Qin ◽  
Ruijuan Fan ◽  
...  

Evidence indicates that the long noncoding RNAs are involved in the metformin-mediated anti-cancer processes. However, the potential effects of the long noncoding RNAs in metformin-mediated anti-tumor processes in esophageal squamous cell carcinomas (ESCC) are still elusive. This study uncovered that metformin decreases the level of long noncoding RNAs CCAT1 and SPRY4-IT1 thereby contributing to the down-regulation of c-Myc and vimentin. Also, the RNA level test of human ESCC tissue confirmed the positive correlation between CCAT1 and c-Myc. These findings demonstrated that metformin facilitated anti-cancer effects by targeting the 2 long noncoding RNAs (CCAT1 and SPRY4-IT1) and their consequential targets c-Myc and vimentin. Therefore, the CCAT1 and SPRY4-IT1 might act as novel molecular targets that mediate the anti-tumor effects in esophageal squamous cell carcinoma. This helps in predicting the treatment response of metformin in patients diagnosed with esophageal squamous cell carcinoma.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


Author(s):  
Jie Li ◽  
Xu Han ◽  
Yan Gu ◽  
Jixiang Wu ◽  
Jianxiang Song ◽  
...  

Esophageal squamous cell carcinoma (ESCC) has been one of the key causes of cancer deaths worldwide. It has been found that long non-coding RNA (lncRNA) is related to the generation and progression of various cancers (including ESCC). However, there are still many lncRNAs related to ESCC whose functions and molecular mechanisms have not been clearly elucidated. In this study, we first reported that lncRNA MTX2-6 was significantly downregulated in ESCC tissues and cell lines. The decreased expression of MTX2-6 is closely related to larger tumor and worse prognosis of ESCC patients. Through a series of functional experiments, we detected that overexpressed MTX2-6 inhibited cell proliferation and promoted cell apoptosis of ESCC in vitro and in vivo. Further studies showed that MTX2-6 exerts as a competing endogenous RNA (ceRNA) by binding miR-574-5p and elevates the expression of SMAD4 in ESCC. In summary, our results clarify the tumor suppressor roles of MTX2-6/miR-574-5p/SMAD4 axis in the progression of ESCC and provide emerging therapeutic targets for ESCC patients.


2015 ◽  
Vol 36 (1) ◽  
pp. 100-110 ◽  
Author(s):  
Kai Liu ◽  
Liyi Li ◽  
Aizemaiti Rusidanmu ◽  
Yongqing Wang ◽  
Xiayi Lv

Aims: Changes in the expression of microRNAs (miRNAs) have been found in many cancers. This study aimed to investigate the expression of miR-1294 in patients with esophageal squamous cell carcinoma (ESCC) and its effect on prognosis. The underlying mechanism was explored as well. Methods: We examined the expression of miRNA in human ESCC cancer tissues and adjacent non-tumor controls using quantitative reverse transcription polymerase chain reaction (qRT-PCR). And the relationship between expressions of miR-1294 and ESCC prognosis was analyzed in this study. Over-expression and knock-down methods were used to investigate the biological functions of miRNA-1294. The effect of miRNA-1294 on cell proliferation was evaluated by MTT. Besides, the function of miR-1294 on cell migration and invasion were evaluated by transwell assays. Results: MiR-1294 was significantly down-regulated in human ESCC tissues compared with the non-tumor controls tissues (P=0.014). And patients with low miR-1294 expression had a significantly poorer prognosis than those with a high miR-1294 expression (P=0.040). Negative association was defined between the expression of miR-1294 and the c-MYC expression in ESCC patients (Pearson correlation, r=-0.299, P=0.0079). Additionally, it was found that miR-1294 suppress esophageal cancer cells proliferation, migration and invasion capacity through targeting c-MYC in vitro. Conclusions: Down-regulation of miR-1294 correlates with poor prognosis of ESCC. It's partially due to the reduced function of c-MYC. This study may give insight into the understanding of pathogenesis of esophageal cancer and provide evidence for diagnosis and treatment of esophageal cancer.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yunlong Jia ◽  
Cong Tian ◽  
Hongyan Wang ◽  
Fan Yu ◽  
Wei Lv ◽  
...  

Abstract Background Cis-diamminedichloro-platinum (CDDP)-based chemotherapy regimens are the most predominant treatment strategies for patients with esophageal squamous cell carcinoma (ESCC). Dysregulated long non-coding RNAs (lncRNAs) contribute to CDDP resistance, which results in treatment failure in ESCC patients. However, the majority of lncRNAs involved in CDDP resistance in ESCC remain to be elucidated. Methods The public Gene Expression Omnibus (GEO) dataset GSE45670 was analysed to reveal potential lncRNAs involved in CDDP resistance of ESCC. Candidate upregulated lncRNAs were detected in ESCC specimens by qRT-PCR to identify crucial lncRNAs. Non-coding RNA activated by DNA damage (NORAD) was selected for further study. Kaplan-Meier analysis and a COX proportional regression model were performed to analyse the potential of NORAD for predicting prognosis of ESCC patients. The role of NORAD in CDDP resistance were determined by conducting gain and loss-of-function experiments in vitro. Fluorescence in situ hybridization (FISH) was performed to determine the subcellular location of NORAD in ESCC cells. A public GEO dataset and bioinformatic algorithms were used to predict the microRNAs (miRNAs) that might be latently sponged by NORAD. qRT-PCR was conducted to verify the expression of candidate miRNAs. Luciferase reporter and Argonaute-2 (Ago2)-RNA immunoprecipitation (RIP) assays were conducted to evaluate the interaction between NORAD and candidate miRNAs. A miRNA rescue experiment was performed to authenticate the NORAD regulatory axis and its effects on CDDP resistance in ESCC cells. Western blotting was conducted to confirm the precise downstream signalling pathway of NORAD. A xenograft mouse model was established to reveal the effect of NORAD on CDDP resistance in vivo. Results The expression of NORAD was higher in CDDP-resistant ESCC tissues and cells than in CDDP-sensitive tissues and cells. NORAD expression was negatively correlated with the postoperative prognosis of ESCC patients who underwent CDDP-based chemotherapy. NORAD knockdown partially arrested CDDP resistance of ESCC cells. FISH showed that NORAD was located in the cytoplasm in ESCC cells. Furthermore, overlapping results from bioinformatic algorithms analyses and qRT-PCR showed that NORAD could sponge miR-224-3p in ESCC cells. Ago2-RIP demonstrated that NORAD and miR-224-3p occupied the same Ago2 to form an RNA-induced silencing complex (RISC) and subsequently regulated the expression of metadherin (MTDH) in ESCC cells. The NORAD/miR-224-3p/MTDH axis promoted CDDP resistance and progression in ESCC cells by promoting nuclear accumulation of β-catenin in vitro and in vivo. Conclusions NORAD upregulates MTDH to promote CDDP resistance and progression in ESCC by sponging miR-224-3p. Our results highlight the potential of NORAD as a therapeutic target in ESCC patients receiving CDDP-based chemotherapy.


Epigenomics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 525-541
Author(s):  
Li Tian ◽  
Lin Yang ◽  
Wenjing Zheng ◽  
Yinqing Hu ◽  
Peikun Ding ◽  
...  

Aim: To explore the roles of exosomal long noncoding RNAs (lncRNAs) in early-stage esophageal squamous cell carcinoma (ESCC) and benign esophagitis. Materials & methods: Exosomal lncRNAs were analyzed using RNA-seq and validated by quantitative real-time PCR, loss-of-function, co-culture and RNA pulldown assays. Results: Exosomal lncRNAs displayed tighter tissue-specificity, higher expression level and lower splicing efficiency than that of mRNAs. A total of 152 exosomal lncRNAs were differentially expressed between ESCC and controls. A total of 124 exosomal lncRNAs were dysregulated between ESCC and esophagitis. Knockdown of 13 ESCC-associated lncRNAs modified proliferation, migration, and apoptosis of ESCC cells. A novel lncRNA RP5-1092A11.2 was highly expressed in ESCC-derived exosomes, ESCC cells and tumor tissues. Exosomes released from RP5-1092A11.2-knockdown cells inhibited ESCC cell proliferation. Conclusion: Dysregulated exosomal lncRNAs were functionally associated with different disease status in esophagus.


2021 ◽  
Vol 10 ◽  
Author(s):  
Ya-Ping Gao ◽  
Lei Li ◽  
Jie Yan ◽  
Xiao-Xia Hou ◽  
Yong-Xu Jia ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies with poor prognosis and lack of effective targeted therapies. In this study, we investigated the tumor suppressive role of the cell death inducing DFF like effector A (CIDEA) in ESCC. Firstly, public datasets and ESCC tissue microarray analysis showed that CIDEA was frequently down-regulated at both the mRNA and protein level. This was significantly associated with low differentiation and TNM stage in ESCC, and indicated poor prognosis for ESCC patients. Bisulfite genomic sequencing (BGS) and methylation-specific PCR (MSP) analysis revealed that the down-regulation of CIDEA was associated with hypermethylation of its promoter, which was also correlated with the poor prognosis in ESCC patients. In vitro and in vivo functional studies demonstrated that CIDEA decreased cell growth, foci formation, DNA replication, and tumorigenesis in nude mice. Further study revealed that, during starvation or cisplatin induced DNA damage, CIDEA facilitated the G1-phase arrest or caspase-dependent mitochondrial apoptosis through the JNK-p21/Bad pathway. Therefore, CIDEA is a novel tumor suppressor gene that plays an important role in the development and progression of ESCC, and may provide a potential therapeutic target for patients with ESCC.


2019 ◽  
Author(s):  
Jun-Qi Liu ◽  
Xiang-Xiang Yang ◽  
Yue-Xin Guo ◽  
Xin Wang ◽  
Hao Gu ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) ranks as one of the most fatal cancers worldwide for its aggression and unsatisfactory survival rate. The long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA axis has been highlighted as a potency biomarker for enhancing the radiosensitivity of ESCC. Hence, we investigated the functional mechanism of the DIO3OS/miR-130b/paired box 9 (PAX9) axis in the radioresistance of ESCC cells. Methods: In cell experiments, we altered the miR-130b expression in ESCC cells using mimics or inhibitors to examine its effects on ESCC cell activities in response to 4 Gy irradiation, as well as the involvement of DIO3OS and PAX9. Tumor xenograft experiments were then conducted to observe the effect of miR-130b, DIO3OS and PAX9 on radiosensitivity of ESCC ells in vivo . Results: miR-130b was found to be highly-expressed in the ESCC. Downregulated miR-130b inhibited proliferation, invasion and resistance to apoptosis in ESCC cells. DIO3OS and PAX9 were reduced in ESCC. A notable finding revealed that miR-130b could bind to DIO3OS and PAX9 respectively. DIO3OS could upregulate PAX9 by binding to miR-130b, which ultimately promoted the radiosensitivity of ESCC in vitro and in vivo . Conclusion: Taken together, DIO3OS upregulates the expression of PAX9 by binding to miR-130b, ultimately promoting the radiosensitivity of ESCC. Keywords: DIO3OS. MicroRNA-130b. Paired box 9. Radiosensitivity. Esophageal squamous cell carcinoma.


Sign in / Sign up

Export Citation Format

Share Document