scholarly journals Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications and Essential Bioactivities for Human Health

Author(s):  
José Nabor Haro-González ◽  
Gustavo Adolfo Castillo-Herrera ◽  
Moisés Martínez-Velázquez ◽  
Hugo Espinosa-Andrews

Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfumery, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has relevant biological activities to human health, including antimicrobial, antioxidant, and insecticide. This review describes the effect of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the chemical composition of essential oil and its correlation with their biological activities. Likewise, are summarized the main compounds and their reported biological activities. Furthermore, the main applications in clove essential oil in the food industry are presented. Finally, this review presents the new biological activities such as anti-inflammatory, analgesic, anesthetic, antinociceptive and anticancer, which are beneficial for human health. This review aims to compile the effect of different methods of extracting clove essential oil on chemical composition, food applications, as well as a current description of biological activities of interest to human health. Biological activities have increased interest in research into this essential oil and its future applications in the food or pharmaceutical industry.

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6387
Author(s):  
José Nabor Haro-González ◽  
Gustavo Adolfo Castillo-Herrera ◽  
Moisés Martínez-Velázquez ◽  
Hugo Espinosa-Andrews

Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10–40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dorsaf Ben Hassine ◽  
Salma Kammoun El Euch ◽  
Rami Rahmani ◽  
Nessrine Ghazouani ◽  
Rouguiata Kane ◽  
...  

This study is aimed at identifying the chemical composition of the essential oil extracted from the Syzygium aromaticum seeds, as well as investigating its biological activities, insecticide effect, and allelopathic properties. The extraction yield was about 14.3 and 7.14% for grounded and ungrounded seeds, respectively. The GC-MS analysis allowed the identification of 17 heterogeneous compounds, including eugenol (68.7-87.4%), as major compound, cyperene (20.5-7.2%), phenethyl isovalerate (6.4-3.6%), and cis-thujopsene (1.9-0.8%), respectively, for grounded and ungrounded seeds. Concerning the antibacterial activity, the diameter of the inhibition zone reached 35 mm when the essential oil extracted from grounded seeds was applied against Escherichia coli. Regarding the antioxidant activity via the DPPH radical scavenging test, the IC 50 varied from 1.2 ± 0.1 to 2.8 ± 0.5   μ g / mL . With respect to reducing power, the efficient concentration EC 50 ranged from 32 to 50 μg/mL. The essential oil exhibited also an allelopathic effect against seeds of Hyoscyamus niger, as well as an insecticide effect against Sitophilus oryzae with a DL 50 value of 252.4 μL/L air. These findings enhance the use of this spice as a natural food preservative and encourage its use in several fields, including pharmaceutical, cosmetics, agriculture, and therapy, that could be a strategic way to guarantee the consumer’s health.


Author(s):  
Wyller Max Ferreira da Silva ◽  
Dianini Hüttner Kringel ◽  
Estefania Júlia Dierings de Souza ◽  
Elessandra da Rosa Zavareze ◽  
Alvaro Renato Guerra Dias

2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


2020 ◽  
Vol 5 (2) ◽  
pp. 364-375
Author(s):  
Amraini Amelia ◽  
◽  
Nining Sugihartini ◽  
Hari Susanti ◽  

This review aims to determine the types of bases that can be used every day, which are effective and efficient as anti-inflammatory drugs. The research method used was to review the development of clove essential oil formulations that have been carried out using various concentrations of various types of bases including M / A type cream, A / M type cream, water soluble base, lotion, emulgel, hydrocarbons, hydrogels and absorbents. The recommended formulation is type M / A cream with a concentration of 5% clove flower essential oil. The types of bases studied were M / A cream, type A / M cream, water soluble base, lotion, emulgel, hydrocarbons, hydrogels and absorption properties which had good physical properties and did not irritate the skin of the test animals. This review refers to several national and international journals released in the last ten years, from 2010 to 2020.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 942
Author(s):  
Emilie Isidore ◽  
Hamza Karim ◽  
Irina Ioannou

Cannabis sativa L. is a controversial crop due to its high tetrahydrocannabinol content varieties; however, the hemp varieties get an increased interest. This paper describes (i) the main categories of phenolic compounds (flavonoids, stilbenoids and lignans) and terpenes (monoterpenes and sesquiterpenes) from C. sativa by-products and their biological activities and (ii) the main extraction techniques for their recovery. It includes not only common techniques such as conventional solvent extraction, and hydrodistillation, but also intensification and emerging techniques such as ultrasound-assisted extraction or supercritical CO2 extraction. The effect of the operating conditions on the yield and composition of these categories of phenolic compounds and terpenes was discussed. A thorough investigation of innovative extraction techniques is indeed crucial for the extraction of phenolic compounds and terpenes from cannabis toward a sustainable industrial valorization of the whole plant.


Author(s):  
Tiago Soraggi Battagin ◽  
Mario Nicolas Caccalano ◽  
Guilherme Dilarri ◽  
Caio Felipe Cavicchia Zamuner ◽  
Natália Alleoni ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2888
Author(s):  
Carmen M. S. Ambrosio ◽  
Gloria L. Diaz-Arenas ◽  
Leidy P. A. Agudelo ◽  
Elena Stashenko ◽  
Carmen J. Contreras-Castillo ◽  
...  

Essential oils (EOs) from Citrus are the main by-product of Citrus-processing industries. In addition to food/beverage and cosmetic applications, citrus EOs could also potentially be used as an alternative to antibiotics in food-producing animals. A commercial citrus EO—Brazilian Orange Terpenes (BOT)—was fractionated by vacuum fractional distillation to separate BOT into various fractions: F1, F2, F3, and F4. Next, the chemical composition and biological activities of BOT and its fractions were characterized. Results showed the three first fractions had a high relative amount of limonene (≥10.86), even higher than the whole BOT. Conversely, F4 presented a larger relative amount of BOT’s minor compounds (carvone, cis-carveol, trans-carveol, cis-p-Mentha-2,8-dien-1-ol, and trans-p-Mentha-2,8-dien-1-ol) and a very low relative amount of limonene (0.08–0.13). Antibacterial activity results showed F4 was the only fraction exhibiting this activity, which was selective and higher activity on a pathogenic bacterium (E. coli) than on a beneficial bacterium (Lactobacillus sp.). However, F4 activity was lower than BOT. Similarly, F4 displayed the highest antioxidant activity among fractions (equivalent to BOT). These results indicated that probably those minor compounds that detected in F4 would be more involved in conferring the biological activities for this fraction and consequently for the whole BOT, instead of the major compound, limonene, playing this role exclusively.


Sign in / Sign up

Export Citation Format

Share Document