scholarly journals Genistein Mediated Molecular Pharmacology, Cell-Specific Anti-Breast Cancer Mechanism with Synergistic Effect and in silico Safety Measurement

Author(s):  
Md Sohel ◽  
Partha Biswas ◽  
Md. Al Amin ◽  
Dipta Dey ◽  
Habiba Sultana ◽  
...  

Breast cancer (BC) is the most common type of cancer in both men and women alike, but it is more prevalent in women. Natural compounds that can modulate the oncogenic process can be considered a significant anti-cancer agent for treating BC. These natural compounds are more effective than synthetic drugs, which have profound side effects on the normal cell and resistance to cancer cells. Genistein is a type of dietary phytoestrogen included in the flavonoid group with a similar structure of estrogen that might provide a strong alternative and complementary medicine to existing chemotherapeutics drugs. Several research studies demonstrated that it can target the estrogen receptor (ER), Human epidermal growth factor receptor-2 (HER2), and Breast cancer gene-1 (BRCA-1) in multiple BC cell lines, as well as sensitize cancer cell lines to this compound when used at an optimal inhibitory concentration. Genistein effectively showed anti-cancer activities through apoptosis induction, arresting cell cycle, inhibiting angiogenesis with metastasis, reducing inflammation, mammosphere formation, tumor growth, up-regulating tumor suppressor gene, and downregulating oncogene in suppressing cancer progression in vitro and animal model study. In addition, research studies have also suggested that these phytochemicals synergistically reverse the resistance mechanism of chemotherapeutic drugs, increasing the efficacy of some chemoinformatics drugs. Our review article aims to unbox and validate the molecular pharmacology in breast tissue, cell-specific anti-cancer mechanism with synergistic activity, and possible pharmacokinetic parameters of Genistein as a potential alternative therapeutic option for the treatment of BC.

2020 ◽  
Vol 19 ◽  
pp. 153303382094748
Author(s):  
Li-wei Ruan ◽  
Peng-peng Li ◽  
Lang-ping Jin

Breast cancer (Bca) remains the most common form of malignancy affecting females in China, leading to significant reductions in the mental and physical health of those with this condition. While spindle and kinetochore associated complex subunit 3 (SKA3) is known to be linked with cervical cancer progression, whether it is similarly associated with Bca progression remains unknown. Using shRNA, we specifically knocked down the expression of SKA3 in Bca cell lines and then assessed the resultant changes in cell proliferation using CCK-8 and colony formation assays. In addition, we used western blotting to quantify the expression levels of relevant proteins in these cells, and we assessed the interaction between SKA3 and polo-like kinase-1 (PLK-1) via co-immunoprecipitation.In this study, we observed elevated SKA3 expression in Bca tissues and cell lines. When we knocked down SKA3 expression in Bca cells, we were able to determine that it functions in an oncogenic manner so as to promote the growth and proliferation of these cells in vitro. From a mechanistic perspective, we were able to show that in Bca cells SKA functions at least in part via interacting with PLK-1 and preventing its degradation. In summary, we found that SKA3 is able to regulate PLK-1 degradation in Bca cells, thus controlling their growth and proliferation. These results highlight SKA3 as a potentially viable target for anti-cancer drug development aimed at combatting Bca.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


Oncotarget ◽  
2017 ◽  
Vol 8 (60) ◽  
pp. 101461-101474 ◽  
Author(s):  
Yung-Lung Chang ◽  
Yu-Juei Hsu ◽  
Ying Chen ◽  
Yi-Wen Wang ◽  
Shih-Ming Huang

2020 ◽  
Author(s):  
Adriane Feijo Evangelista ◽  
Renato J Oliveira ◽  
Viviane A O Silva ◽  
Rene A D C Vieira ◽  
Rui M Reis ◽  
...  

Abstract Introduction: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. Methods: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex, flow cytometry and transwell assays were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. Results: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. Conclusion: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


2019 ◽  
Author(s):  
Eliza E. Bitter ◽  
Michelle H. Townsend ◽  
Kary Y.F. Tsai ◽  
Carolyn I. Allen ◽  
Rachel I. Erickson ◽  
...  

Abstract 1. Background: The salvage pathway enzyme thymidine kinase 1 (TK1) is elevated in the serum of several different cancer types and higher expression is associated with more aggressive tumor grade. As a result, it has potential as a biomarker for diagnosis and prognosis. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement has not been identified. We propose to evaluate the effects of TK1 on cancer progression in vitro through measuring cellular invasion and survival of breast cancer cells.2.Methods: Breast cancer cells MDA-MB-231, HCC 1806, and MCF7 were cultured according to standard techniques. We employed the use of TK1 target siRNA and a CRISPR-Cas9 TK1 knockout plasmid to compare transfected cell lines to wild type cell lines. Protein factors in survival and invasive pathways were also tested for correlations to TK1 in BRCA RNA-seq patient data (n=1095) using the TIMER program. Cellular invasion was quantified in cell index (factor of impedance) over a 24-hour period. Cell survival was measured by apoptosis under metabolic and DNA stress using flow cytometry. All results were statistically assessed using an ANOVA or t-test in GraphPad PRISM®.3.Results: Cellular invasion assays assessing wild type and TK1 knockdown/knockout (TK1-/-) cell types showed TK1-/- cell lines had increased invasion potential (p= 0.0001). Bioinformatically, we saw a strong overall negative correlation between apoptotic factors and TK1 (p ≤ 0.05). When testing TK1 effects on cell survival we saw a protective affect under DNA stress (p ≤ 0.05), but not under metabolic stress (p= 0.0001).4.Conclusion From cell cycle analysis, we observed a shift towards S phase in TK1-/- cells. This shift to S phase would promote growth and account for the increased cellular invasion and decrease in metabolic induced stress in TK1-/- cells. We propose that cancer cells still may elicit a cancer progressive phenotype based on effects of TK1, but that a system which isolates TK1 is not effective to understand the effects. Instead, identifying protein networks inclusive of TK1 will help to elucidate its effects on cancer progression.


2020 ◽  
Vol 21 (23) ◽  
pp. 9034
Author(s):  
Cristina Nieto-Jimenez ◽  
Ana Alcaraz-Sanabria ◽  
Sandra Martinez-Canales ◽  
Veronica Corrales-Sanchez ◽  
Juan Carlos Montero ◽  
...  

Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2448 ◽  
Author(s):  
Yuan Lyu ◽  
Steven Kopcho ◽  
Folnetti A. Alvarez ◽  
Bryson C. Okeoma ◽  
Chioma M. Okeoma

BST-2 is a novel driver of cancer progression whose expression confers oncogenic properties to breast cancer cells. As such, targeting BST-2 in tumors may be an effective therapeutic approach against breast cancer. Here, we sought to develop potent cytotoxic anti-cancer agent using the second-generation BST-2-based anti-adhesion peptide, B18, as backbone. To this end, we designed a series of five B18-derived peptidomimetics. Among these, B18L, a cationic amphiphilic α-helical peptidomimetic, was selected as the drug lead because it displayed superior anti-cancer activity against both drug-resistant and drug-sensitive cancer cells, with minimal toxicity on normal cells. Probing mechanism of action using molecular dynamics simulations, biochemical and membrane biophysics studies, we observed that B18L binds BST-2 and possesses membranolytic characteristics. Furthermore, molecular biology studies show that B18L dysregulates cancer signaling pathways resulting in decreased Src and Erk1/2 phosphorylation, increased expression of pro-apoptotic Bcl2 proteins, caspase 3 cleavage products, as well as processing of the caspase substrate, poly (ADP-ribose) polymerase-1 (PARP-1), to the characteristic apoptotic fragment. These data indicate that through the coordinated regulation of membrane, mitochondrial and signaling events, B18L executes cancer cell death and thus has the potential to be developed into a potent and selective anti-cancer compound.


2009 ◽  
Vol 69 (14) ◽  
pp. 5946-5953 ◽  
Author(s):  
Narasimharao V. Marella ◽  
Kishore S. Malyavantham ◽  
Jianmin Wang ◽  
Sei-ichi Matsui ◽  
Ping Liang ◽  
...  

2013 ◽  
Vol 850-851 ◽  
pp. 1291-1294
Author(s):  
Xiu Rui Han ◽  
Xian Chao Li ◽  
Hong Zong Si ◽  
Cui Zhu Ge ◽  
Hua Gao ◽  
...  

Using the GEP,the QSAR model for anti-cancer activity of 38 compounds in 5 cancer cell lines was establish. These compounds are a novel class of anticarcinogen named tricyclic 5:7:5-fused diimidazo [4, 5-d:4, 5-f ][1, diazepines. The carcinoma cell lines involved in this research are A549 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, OVCAR-3 ovarian cancer and PC-3 prostate cancer. Accuracies of these models in training group and test group are over 90%, showing perfect predictive ability. This QSAR model will be great valuable in providing guidance for future designing and synthesizing of anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document