scholarly journals Agrococcus massiliensis sp. nov., a Novel Bacterial Species Isolated from Human Healthy Skin

Author(s):  
Manon Boxberger ◽  
Sibylle Magnien ◽  
Angeline Antezack ◽  
Clara Rolland ◽  
Marine Makoa Meng ◽  
...  

Marseille-Q4369 is a strain that we isolated from human healthy skin and characterized by taxono-genomic approach. Marseille-Q4369 exhibited 99.80% 16S rRNA sequence similarity with Agrococcus pavilionensisT the phylogenetically closest bacterium with standing in nomenclature. Furthermore, digital DNA–DNA hybridization revealed a maximum identity similarity of only 52.4% and an OrthoANI parameter provided a value of 93.63% between the novel organism and Agrococcus pavilionensisT. Marseille-Q4369 was observed to be a yellowish-pigmented, Gram-positive, coccoïd, facultative aerobic bacterium, and belonging to the Microbacteriaceae family. The major fatty acids detected are 12-methyl-tetradecanoic acid (66%), 14-methyl-hexadecanoic acid (24%) followed by 13-methyl-tetradecanoic acid (5%). The genome size of strain Marseille-Q4369 was 2,737,735-bp long with a 72,27 % G+C content. Taken altogether, these results confirm the status of this strain as a new member of the Agrococcus genus for which the name of Agrococcus massiliensis is proposed (=CSUR-Q4369 = DSM112404).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Johnson Kangale ◽  
Didier Raoult ◽  
Eric Ghigo ◽  
Pierre-Edouard Fournier

AbstractMarseille-P9602T is a Chryseobacterium-like strain that we isolated from planarian Schmidtea mediterranea and characterized by taxono-genomic approach. We found that Marseille-P9602T strain exhibits a 16S rRNA gene sequence similarity of 98.76% with Chryseobacterium scophthalmum LMG 13028T strain, the closest phylogenetic neighbor. Marseille-P9602T strain was observed to be a yellowish-pigmented, Gram-negative, rod-shaped bacterium, growing in aerobic conditions and belonging to the Flavobacteriaceae family. The major fatty acids detected are 13-methyl-tetradecanoic acid (57%), 15-methylhexadecenoic acid (18%) and 12-methyl-tetradecanoic acid (8%). Marseille-P9602 strain size was found from genome assembly to be of 4,271,905 bp, with a 35.5% G + C content. The highest values obtained for Ortho-ANI and dDDH were 91.67% and 44.60%, respectively. Thus, hereby we unravel that Marseille-P9602 strain is sufficiently different from other closed related species and can be classified as a novel bacterial species, for which we propose the name of Chryseobacterium schmidteae sp. nov. Type strain is Marseille-P9602T (= CSUR P9602T = CECT 30295T).


2021 ◽  
Author(s):  
Dawoon Chung ◽  
Jaoon Young Hwan Kim ◽  
Kyung Woo Kim ◽  
Yong Min Kwon

Abstract A gram-negative, orange-pigmented, non-flagellated, gliding, rod-shaped, and aerobic bacterium, designated strain F202Z8T, was isolated from a rusty iron plate found in the intertidal region of Taean, South Korea. Notably, this strain synthesized silver nanoparticles (AgNPs), and 17 putative genes responsible for the synthesis of AgNPs were found in its genome. The complete genome sequence of strain F202Z8T is 4,723,614 bp, with 43.26% G + C content. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain F202Z8T forms a distinct lineage with closely related genera Maribacter, Pelagihabitans, Pseudozobellia, Zobellia, Pricia, and Costertonia belonging to the family Flavobacteriaceae. The 16S rRNA sequence similarity was < 94.5%. The digital DNA–DNA hybridization and average nucleotide identity values calculated from the whole genome-sequence comparison between strain F202Z8T and other members of the family Flavobacteriaceae were in the ranges of 12.7–16.9% and 70.3–74.4%, respectively. Growth was observed at 15–33°C (optimally at 30°C), at pH 6.5–7.5 (optimally at pH 7.0), and with the addition of 2.5–4.5% (w/v) NaCl to the media (optimally at 4.0%). The predominant cellular fatty acids were iso-C15: 0, iso-C15 :1 G, and iso-C17 :0 3-OH; the major respiratory quinone was MK-6. Polar lipids included phosphatidylethanolamine, five unidentified lipids, and two unidentified aminolipids. Our polyphasic taxonomic results suggested that this strain represents a novel species of a novel genus in the family Flavobacteriaceae, for which the name Aggregatimonas sangjinii gen. nov., sp. nov. is proposed. The type strain of Aggregatimonas sangjinii is F202Z8T (= KCCM 43411T = LMG 31494T).


2007 ◽  
Vol 57 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, rod-shaped, non-spore-forming and strictly aerobic bacterium (Gsoil 161T) was isolated from soil of a ginseng field in Pocheon Province, South Korea. The novel isolate was characterized using a polyphasic approach in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 161T was shown to belong to the family Nocardioidaceae and was related to Aeromicrobium marinum (98.0 % similarity to the type strain), Aeromicrobium alkaliterrae (97.6 %), Aeromicrobium fastidiosum (97.0 %) and Aeromicrobium erythreum (96.7 %); the sequence similarity with other species within the family was less than 94.4 %. It was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and C16 : 0, 10-methyl C18 : 0 (tuberculostearic acid), C16 : 0 2-OH, 10-methyl C17 : 0 and 10-methyl-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 65.5 mol%. These chemotaxonomic properties and phenotypic characteristics support the affiliation of strain Gsoil 161T to the genus Aeromicrobium. Results of physiological and biochemical tests enabled strain Gsoil 161T to be differentiated genotypically and phenotypically from currently known Aeromicrobium species. Therefore, strain Gsoil 161T represents a novel species, for which the name Aeromicrobium panaciterrae sp. nov. is proposed. The type strain is strain Gsoil 161T (=KCTC 19131T=DSM 17939T=CCUG 52476T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4644-4649 ◽  
Author(s):  
Shuzhen Wei ◽  
Tingting Wang ◽  
Hongliang Liu ◽  
Caifeng Zhang ◽  
Jiping Guo ◽  
...  

A polyphasic taxonomic study was undertaken to establish the status of a novel bacterium, designated strain WHSC-8T, which was isolated from soil of Hengshui Lake Wetland Reserve in Hebei province, northern China. Colonies of this strain were yellow and cells were rod-shaped, polar-flagellated and obligately aerobic, exhibiting negative Gram reaction. The strain was able to grow at 0–1 % (w/v) NaCl, pH 5–10 and 20–35 °C, with optimal growth occurring at pH 7.0 and 28 °C without NaCl. Chemotaxonomic data revealed that strain WHSC-8T possesses ubiquinone Q-10 as the predominant respiratory quinone, C18 : 1ω7c, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids, and sym-homospermidine as the major polyamine. Sphingomonadaceae-specific sphingoglycolipid was detected in the polar lipid patterns. The G+C content of the genomic DNA was 68.7 mol%. All of the above characters corroborated the assignment of the novel strain to the genus Sphingomonas. Strain WHSC-8T shared less than 97.0 % 16S rRNA gene sequence similarity with the type strains of other species of the genus Sphingomonas, except for Sphingomonas asaccharolytica DSM 10564T (97.5 %). The low DNA–DNA relatedness value and distinct phenotypic and chemotaxonomic characteristics distinguished strain WHSC-8T from closely related species of the genus Sphingomonas. Therefore, strain WHSC-8T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hengshuiensis sp. nov. is proposed. The type strain is WHSC-8T ( = KCTC 42455T = CCTCC AB 2015265T).


2021 ◽  
Vol 12 (2) ◽  
pp. 299-316
Author(s):  
Luis Johnson Kangale ◽  
Didier A. Raoult ◽  
Eric Ghigo ◽  
Pierre-Edouard Fournier

Taxonogenomics combines phenotypic assays and genomic analysis as a means of characterizing novel strains. We used this strategy to study Marseille-P9898T strain, an aerobic, motile, Gram-negative, spore-forming, and rod-shaped bacterium isolated from planarian Schmidtea mediterranea. Marseille-P9898T is catalase-positive and oxidase-negative. The major fatty acids detected are 12-methyl-tetradecanoic acid, 13-methyl-tetradecanoic acid, and hexadecanoic acid. Marseille-P9898T strain shared more than 98% sequence similarity with the Metabacillus niabensis strain 4T19T (98.99%), Metabacillus halosaccharovorans strain E33T (98.75%), Metabacillus malikii strain NCCP-662T (98.19%), and Metabacillus litoralis strain SW-211T (97.15%). Marseille-P9898 strain belongs to Metabacillus genus. Genomic analysis revealed the highest similarities with Ortho-ANI and dDDH, 85.76% with Metabacillus halosaccharovorans, and 34.20% with Bacillus acidicola, respectively. These results show that the Marseille-P9898T strain is a novel bacterial species from Metabacillus genus, for which we propose the name of Metabacillus schmidteae sp. nov. (Type strain Marseille-P9898T = CSUR P9898T = DSM 111480T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4724-4729 ◽  
Author(s):  
Fazel Pourahmad ◽  
Mateja Pate ◽  
Matjaž Ocepek ◽  
Emanuele Borroni ◽  
Andrea M. Cabibbe ◽  
...  

The name ‘Mycobacterium angelicum’ dates back to 2003 when it was suggested for a slowly growing mycobacterium isolated from freshwater angelfish. This name is revived here and the novel species is proposed on the basis of the polyphasic characterization of four strains including the original one. The four strains presented 100 % 16S rRNA gene sequence similarity with Mycobacterium szulgai but clearly differed from M. szulgai for the milky white aspect of the colonies. The sequence similarity with the type strain of M. szulgai ranged, in eight additionally investigated genetic targets, from 78.9 to 94.3 %, an evident contrast with the close relatedness that emerged at the level of 16S rRNA gene. The average nucleotide identity between the genomes of M. szulgai DSM 44166T and strain 126/5/03T (type strain of the novel species) was 92.92 %, and supported the status of independent species. The confirmation of the name Mycobacterium angelicum sp. nov. is proposed, with strain 126/5/03T ( = CIP 109313T = DSM 45057T) as the type strain.


2021 ◽  
Vol 12 (2) ◽  
pp. 268-287
Author(s):  
Luis Johnson Kangale ◽  
Didier Raoult ◽  
Fournier Pierre-Edouard

The planarian S. mediterranea is a platyhelminth with worldwide distribution that can regenerate any part of its body after amputation and has the capacity to eliminate a large spectrum of human bacterial pathogens. Surprisingly, the microbiota of S. mediterranea remains poorly investigated. Using the culturomics strategy to study the bacterial component of planarians, we isolated a new bacterial strain, Marseille-Q2390, which we characterized with the taxono-genomic approach that associates phenotypic assays and genome sequencing and analysis. Strain Marseille-Q2390 exhibited a 16S rRNA sequence similarity of 99.36% with Pedobacter kyungheensis strain THG-T17T, the closest phylogenetic neighbor. It is a white-pigmented, Gram-negative, and rod-shaped bacterium. It grows in aerobic conditions and belongs to the family Sphingobacteriaceae. The genome of strain Marseille-Q2390 is 5,919,359 bp-long, with a G + C content of 40.3%. By comparing its genome with other closely related strains, the highest Orthologous Average Nucleotide Identity (Ortho-ANI) and digital DNA-DNA hybridization (dDDH) values were 85.71% and 30.50%, respectively, which were found with Pedobacter soli strain 15-51T. We conclude that strain Marseille-Q2390T is sufficiently different from other nearby species to be classified within a new species for which we propose the name Pedobacter ghigonii sp. nov.


2006 ◽  
Vol 56 (7) ◽  
pp. 1677-1680 ◽  
Author(s):  
Anil K. Tripathi ◽  
Subhash C. Verma ◽  
Soumitra Paul Chowdhury ◽  
Michael Lebuhn ◽  
Andreas Gattinger ◽  
...  

A non-pigmented, motile, Gram-negative bacterium designated MTCC 4195T was isolated from surface-sterilized seeds and plant tissue from deep-water rice (Oryza sativa) cultivated in Suraha Tal Lake in northern India. This isolate was shown to reinfect and colonize deep-water rice endophytically. The highest level of 16S rRNA sequence similarity (96.8 %) to strain MTCC 4195T was shown by Ochrobactrum gallinifaecis DSM 15295T. Strain MTCC 4195T utilized γ-hydroxybutyric acid, adonitol, d-glucosaminic acid and arabinose as carbon sources, but failed to use gentiobiose or citrate. The cell-wall fatty acids of strain MTCC 4195T were characterized by the presence of a relatively large proportion of C18 : 1 ω7c and a relative small proportion of C16 : 0 in comparison with Ochrobactrum species. DNA–DNA relatedness studies showed less than 52 % binding with the DNAs of type strains of other species of the genus Ochrobactrum. On the basis of phenotypic and genotypic characteristics and the results of 16S rRNA gene sequence analysis, the novel species Ochrobactrum oryzae sp. nov. is proposed, with MTCC 4195T (=DSM 17471T) as the type strain.


2011 ◽  
Vol 61 (5) ◽  
pp. 1170-1175 ◽  
Author(s):  
Luciane A. Chimetto ◽  
Ilse Cleenwerck ◽  
Marcelo Brocchi ◽  
Anne Willems ◽  
Paul De Vos ◽  
...  

A Gram-negative, aerobic bacterium, designated strain R-40503T, was isolated from mucus of the reef-builder coral Mussismilia hispida, located in the São Sebastião Channel, São Paulo, Brazil. Phylogenetic analyses revealed that strain R-40503T belongs to the genus Marinomonas. The 16S rRNA gene sequence similarity of R-40503T was above 97 % with the type strains of Marinomonas vaga, M. basaltis, M. communis and M. pontica, and below 97 % with type strains of the other Marinomonas species. Strain R-40503T showed less than 35 % DNA–DNA hybridization (DDH) with the type strains of the phylogenetically closest Marinomonas species, demonstrating that it should be classified into a novel species. Amplified fragment length polymorphism (AFLP), chemotaxonomic and phenotypic analyses provided further evidence for the proposal of a novel species. Concurrently, a close genomic relationship between M. basaltis and M. communis was observed. The type strains of these two species showed 78 % DDH and 63 % AFLP pattern similarity. Their phenotypic features were very similar, and their DNA G+C contents were identical (46.3 mol%). Collectively, these data demonstrate unambiguously that Marinomonas basaltis is a later heterotypic synonym of Marinomonas communis. Several phenotypic features can be used to discriminate between Marinomonas species. The novel strain R-40503T is clearly distinguishable from its neighbours. For instance, it shows oxidase and urease activity, utilizes l-asparagine and has the fatty acid C12 : 1 3-OH but lacks C10 : 0 and C12 : 0. The name Marinomonas brasilensis sp. nov. is proposed, with the type strain R-40503T ( = R-278T  = LMG 25434T  = CAIM 1459T). The DNA G+C content of strain R-40503T is 46.5 mol%.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4455-4460 ◽  
Author(s):  
Xuexin Wei ◽  
Shouwei Yan ◽  
Dai Li ◽  
Huancheng Pang ◽  
Yuyi Li ◽  
...  

A Gram-stain-negative, non-spore-forming, rod-shaped and aerobic bacterium, designated Xi19T, was isolated from a soil sample collected from the rhizosphere of sunflower (Helianthus annuus) in Wuyuan county of Inner Mongolia, China and was characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate was related to species of the genus Rhizobium, sharing the greatest 16S rRNA gene sequence similarity with Rhizobium rhizoryzae J3-AN59T (98.4 %), followed by Rhizobium pseudoryzae J3-A127T (97.4 %). There were low similarities ( < 91 %) between the atpD, recA and glnII gene sequences of the novel strain and those of members of the genus Rhizobium. DNA–DNA hybridization values between strain Xi19T and the most related strain Rhizobium rhizoryzae J3-AN59T were low. The major cellular fatty acids of strain Xi19T were C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0 cyclo ω8c. Q-10 was identified as the predominant ubiquinone and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content of strain Xi19T was 60.2 mol%. On the basis of physiological and biochemical characteristics, coupled with genotypic data obtained in this work, strain Xi19T represents a novel species of the genus Rhizobium, for which the name Rhizobium helianthi is proposed. The type strain is Xi19T ( = CGMCC 1.12192T = KCTC 23879T).


Sign in / Sign up

Export Citation Format

Share Document