scholarly journals Primary Air Pollutants Emissions Variation Characteristics and Future Control Strategies for Transportation Sector in Beijing, China

2020 ◽  
Vol 12 (10) ◽  
pp. 4111 ◽  
Author(s):  
Yifeng Xue ◽  
Xizi Cao ◽  
Yi Ai ◽  
Kangli Xu ◽  
Yichen Zhang

Air pollutant emissions from vehicles, railways, and aircraft for freight and passenger transportation are major sources of air pollution, and strongly impact the air quality of Beijing, China. To better understand the variation characteristics of these emissions, we used the emission factor method to quantitatively determine the air pollutant emissions from the transportation sector. The emission intensity of different modes of transportation was estimated, and measures are proposed to prevent and control air pollutants emitted from the transportation sector. The results showed that air pollutant emissions from the transportation sector have been decreasing year by year as a result of the reduction in emissions from motor vehicles, benefiting from the structural adjustment of motor vehicles. A comparison of the emission intensity of primary air pollutants from different modes of transportation showed that the emission level of railway transportation was much lower than that of road transportation. However, Beijing relies heavily on road transportation, with road freight transportation accounting for 96% of freight transportation, whereas the proportion of railway transportation was low. Primary air pollutants from the transportation sector contributed significantly to the total emissions in Beijing. The proportion of NOX emissions increased from 54% in 2013 to 58% in 2018. To reduce air pollutant emissions from the transportation sector, further adjustments and optimization of the structure of transportation in Beijing are needed. As for the control of motor vehicle pollutant emissions, vehicle composition must be adjusted and the development of clean energy must be promoted, as well as the replacement of diesel vehicles with electric vehicles for passenger and freight transportation.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wen-jie Zou ◽  
Tai-Yu Lin ◽  
Yung-ho Chiu ◽  
Ting Teng ◽  
Kuei Ying Huang

Finding the balance between economic development and environmental protection is a major problem for many countries around the world. Air pollution caused by economic growth has caused serious damage to humans’ living environment, and as improving energy and resource efficiencies is the first priority, many countries are targeting to move towards a sustainable environment and economic development. This study uses the modified dynamic SBM (slack-based measure) model to explore the economic efficiency and air pollutants emission efficiency in Taiwan’s counties and cities from 2012 to 2015 by taking labor, motor vehicles, and electricity consumption as inputs and average disposable income as output. Particulate matter (PM2.5), nitrogen oxide emissions (NO2), and sulfur oxide emissions (SO2) are undesirable outputs, whereas factory fixed assets are a carry-over variable, and the results show the following: (1) the regions with the best overall efficiency between 2012 and 2015 include Taipei City, Keelung City, Hsinchu City, Chiayi City, and Taitung County; (2) in counties and cities with poor overall efficiency performance, the average disposable income per household has no significant relationship with air pollutant emissions; (3) in counties and cities where overall efficiency is poor, the average efficiency of each household’s disposable income is small; and (4) except for the five counties and cities with the best overall performance, the three air pollutants in the other fourteen counties and cities are high. Overall, the air pollution of most areas needs improvement.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3999 ◽  
Author(s):  
Minyoung Roh ◽  
Seungho Jeon ◽  
Soontae Kim ◽  
Sha Yu ◽  
Almas Heshmati ◽  
...  

South Korea has been suffering from high PM2.5 pollution. Previous studies have contributed to establishing PM2.5 mitigation policies but have not considered provincial features and sector-interactions. In that sense, the integrated assessment model (IAM) could complement the shortcomings of previous studies. IAM, capable of analyzing PM2.5 pollution levels at the provincial level in Korea, however, has not been developed yet. Hence, this study (i) expands on IAM which can represent provincial-level spatial resolution in Korea (GCAM-Korea) with air pollutant emissions modeling which focuses on the road transportation sector and (ii) examines the zero-emission vehicles (ZEVs) subsidy policy’s effects on PM2.5 mitigation using the expanded GCAM-Korea. Simulation results show that PM2.5 emissions decrease by 0.6–4.1% compared to the baseline, and the Seoul metropolitan area contributes 38–44% to the overall PM2.5 emission reductions. As the ZEVs subsidy is weighted towards the light-duty vehicle 4-wheels (LDV4W) sector, various spillover effects are found: ZEVs’ share rises intensively in the LDV4W sector leading to an increase in its service costs, and at the same time, driving bus service costs to become relatively cheaper. This, in turn, drives an increase in bus service demand and emissions discharge. Furthermore, this type of impact of the ZEVs subsidy policy does not reduce internal combustion engine vehicles (ICEVs) in freight trucks, although diesel freight trucks are a major contributor to PM2.5 emissions and also to NOx.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


Author(s):  
Michelle N. Rosado-Pérez ◽  
Karen Ríos-Soto

Asthma is a respiratory disease that affects the lungs, with a prevalence of 339.4 million people worldwide [G. Marks, N. Pearce, D. Strachan, I. Asher and P. Ellwood, The Global Asthma Report 2018, globalasthmareport.org (2018)]. Many factors contribute to the high prevalence of asthma, but with the rise of the industrial age, air pollutants have become one of the main Ultrafine particles (UFPs), which are a type of air pollutant that can affect asthmatics the most. These UFPs originate primarily from the combustion of motor vehicles [P. Solomon, Ultrafine particles in ambient air. EM: Air and Waste Management Association’s Magazine for Environmental Managers (2012)] and although in certain places some regulations to control their emission have been implemented they might not be enough. In this work, a mathematical model of reaction–diffusion type is constructed to study how UFPs grow and disperse in the environment and in turn how they affect an asthmatic population. Part of our focus is on the existence of traveling wave solutions and their minimum asymptotic speed of pollutant propagation [Formula: see text]. Through the analysis of the model it was possible to identify the necessary threshold conditions to control the pollutant emissions and consequently reduce the asthma episodes in the population. Analytical and numerical results from this work prove how harmful the UFEs are for the asthmatic population and how they can exacerbate their asthma episodes.


2021 ◽  
Vol 5 (2) ◽  
pp. 41-45
Author(s):  
Hurip Jayadi ◽  
Frida Hendrarinata ◽  
Beny Suyanto ◽  
Sunaryo Sunaryo

In general, inpatient health care facilities produce infectious and non-infectious waste 0.3 mᶟ / day. Non-infectious waste that is burned in an incinerator without a chimney filter, can cause particles, CO, SO2, NOx (air pollutants) and cause environmental pollution. This study aims to make a chimney filter design with a Scrubber model on an incinerator at the Public Health Center, Maospati District, Magetan Regency to reduce the amount of air pollutants emitted. This type of research is experimental research. This research designed a particle trapping device, gas by spraying water into the scrubber. The independent variable of this research was the variation of the water flow sprayed in the scrubber (3.2 liters / minute, 4 liters / minute, 5.6 liters / minute). The dependent variables of this study were particles, SO2, NOx, CO. Data collection using a digital gas detector method in the form of a UV spectrophotometer. Data were analyzed descriptively, in the form of frequency distribution, and percentage, presentation of data in a table based on air emission quality standards from thermal waste processing. The results illustrate that the use of a chimney scrubber filter with water spraying 3.2 liters / minute, 4 liters / minute, 5.6 liters / minute can reduce air pollutants, emission of SO2, CO to below the air quality standard. In addition, this tool can also reduce NOx gas and particles, but not yet below the quality standard. The conclusion from the results of this study is particulate emission air pollutants, gas SO2, CO, NOx. the incinerator can be lowered by modifying variations by spraying water 3.2 liters / minute, 4 liters / minute, 5.6 liters / minute on the chimney scrubber filter on the incinerator. Keywords: incinerator; scrubber; water discharge variations; particle; gas


2012 ◽  
Vol 550-553 ◽  
pp. 2378-2381 ◽  
Author(s):  
Tai Yi Yu ◽  
I Cheng Chang ◽  
Mei Yin Hwa ◽  
Li Teh Lu

Vehicle emissions from mobile sources are major contributors to air pollution and varied with vehicle types, vehicle styles, traveled miles, temperature, oil types and the methods of operation and management. This study performs three emission factor models, Mobile-Taiwan 2, Mobile6.2 and EFDB to calculate emission factor of mobile sources from year 1986 to 2011. The emissions of primary air pollutants, MIRs and CO2emitted from mobile sources were calculated. The contribution ratios of varied vehicle types for different air pollutants would be compared and analyzed. Estimated emissions from mobile sources were 32.2, 177, 643, 197 and 401 kilotons/y for PM10, NOx, CO, THC and MIR for 2000; 31.3, 115, 305, 114 and 227 kilotons/y for 2011. Emissions of traditional air pollutants presented a decreasing trend because of fourth-stage emission standards for mobiles sources and CO2 revealed an increasing trend. According to presented control technology for greenhouse gases on mobile sources, ratio of emission for year 2011 to 2000 would be 1.38-1.49.


2020 ◽  
Author(s):  
Christoph A. Keller ◽  
Mathew J. Evans ◽  
K. Emma Knowland ◽  
Christa A. Hasenkopf ◽  
Sruti Modekurty ◽  
...  

Abstract. Social-distancing to combat the COVID-19 pandemic has led to widespread reductions in air pollutant emissions. Quantifying these changes requires a business as usual counterfactual that accounts for the synoptic and seasonal variability of air pollutants. We use a machine learning algorithm driven by information from the NASA GEOS-CF model to assess changes in nitrogen dioxide (NO2) and ozone (O3) at 5756 observation sites in 46 countries from January through June 2020. Reductions in NO2 correlate with timing and intensity of COVID-19 restrictions, ranging from 60 % in severely affected cities (e.g., Wuhan, Milan) to little change (e.g., Rio de Janeiro, Taipei). On average, NO2 concentrations were 18 % lower than business as usual from February 2020 onward. China experienced the earliest and steepest decline, but concentrations since April have mostly recovered and remained within 5 % to the business as usual estimate. NO2 reductions in Europe and the US have been more gradual with a halting recovery starting in late March. We estimate that the global NOx (NO + NO2) emission reduction during the first 6 months of 2020 amounted to 2.9 TgN, equivalent to 5.1 % of the annual anthropogenic total. The response of surface O3 is complicated by competing influences of non-linear atmospheric chemistry. While surface O3 increased by up to 50 % in some locations, we find the overall net impact on daily average O3 between February–June 2020 to be small. However, our analysis indicates a flattening of the O3 diurnal cycle with an increase in night time ozone due to reduced titration and a decrease in daytime ozone, reflecting a reduction in photochemical production. The O3 response is dependent on season, time scale, and environment, with declines in surface O3 forecasted if NOx emission reductions continue.


This research reflects on the impacts of traffic factors, car acceleration, volume of traffic, road gradient and the resulting sum of air pollutants, with a significant impact on the emissions of the vehicles. The general and detailed urban plans are normally addressed to these factors. Such considerations usually determine the adverse effects of motor vehicles, and environmental hazards, such as air pollution and vibration, which affects highways and bridges. However, the effect of road transport and preparation on the ecosystem is described. The research focuses on climate aspects that can be identified and designed so that all generic proposals can include them. In this study, CO, NO2, TVOC’s and SO2 concentration at multiple sampling sites were screened regularly. The study revealed that air pollutant rates are highly correlated with traffic movement and prevailing gradients. The SO2, NO2, CO and TVOC’s concentrations were very much associated to significant road flow parameters such as traffic elevation, intensity and amount of transport.


2014 ◽  
Vol 14 (6) ◽  
pp. 7917-7963
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total primary particulate matter (PM), PM10, and PM2.5 are estimated to decline 7%, 20%, 41%, 34%, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and partial implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17% (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12% and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants and taking account of more diverse environmental impacts is also urgently needed.


Author(s):  
Wlisses Bonelá Fontoura ◽  
Glaydston Mattos Ribeiro

Abstract Systems Dynamics (SD) is an efficient method that allows to analyze systems with dynamic complexity and policy resistance. The holistic approach of SD is suitable to analyze the current transportation problems. Among the applications of SD in the transportation sector, the use of this tool in the development and implementation of sustainable transport policies stands out. In this context, this paper aims to conduct a systematic literature review to assess the use of SD in the development and implementation of urban policies focused on sustainable transportation. The results show that most studies analyze policies focused on reducing the negative externalities of transportation, highlighting the efforts to reduce air pollutant emissions and traffic congestion. However, we did not find a study that analyzes non-motorized and motorized modes by economic, environmental, social, spatial and traffic variables. At the end of this study, the gaps found in the literature are pointed out, being available to further exploration in future studies.


Sign in / Sign up

Export Citation Format

Share Document