scholarly journals Nanometers-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond

Author(s):  
Annette Setzer ◽  
Pablo D. Esquinazi ◽  
Sergei Buga ◽  
Milena Georgieva ◽  
Tilo Reinert ◽  
...  

In this work, we demonstrate that cutting diamond crystals with a laser (532 nm wavelength, 0.5 mJ energy, 200 ns pulse duration at 15 kHz) produces a ≲20nm thick surface layer with magnetic order at room temperature. We have measured the magnetic moment with a SQUID magnetometer of six natural and six CVD diamond crystals of different size, nitrogen content and surface orientations. A robust ferromagnetic response at 300 K is observed only for crystals that were cut with the laser along the (100) surface orientation. The magnetic signals are much weaker for the (110) and negligible for the (111) orientations. We attribute the magnetic order to the disordered graphite layer produced by the laser at the diamond surface. The ferromagnetic signal vanished after chemical etching or after moderate temperature annealing. The obtained results indicate that laser treatment of diamond may pave the way to create ferromagnetic spots at its surface.

Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4505-4518
Author(s):  
Sarath Raman Nair ◽  
Lachlan J. Rogers ◽  
Xavier Vidal ◽  
Reece P. Roberts ◽  
Hiroshi Abe ◽  
...  

AbstractLaser threshold magnetometry using the negatively charged nitrogen-vacancy (NV−) centre in diamond as a gain medium has been proposed as a technique to dramatically enhance the sensitivity of room-temperature magnetometry. We experimentally explore a diamond-loaded open tunable fibre-cavity system as a potential contender for the realisation of lasing with NV− centres. We observe amplification of the transmission of a cavity-resonant seed laser at 721 nm when the cavity is pumped at 532 nm and attribute this to stimulated emission. Changes in the intensity of spontaneously emitted photons accompany the amplification, and a qualitative model including stimulated emission and ionisation dynamics of the NV− centre captures the dynamics in the experiment very well. These results highlight important considerations in the realisation of an NV− laser in diamond.


Optik ◽  
2021 ◽  
Vol 231 ◽  
pp. 166451
Author(s):  
Haoyu Dong ◽  
Yu Huang ◽  
Wenyuan Li ◽  
Jianyao Li ◽  
Youmin Rong

2018 ◽  
Vol 113 (22) ◽  
pp. 222104 ◽  
Author(s):  
Munho Kim ◽  
Hsien-Chih Huang ◽  
Jeong Dong Kim ◽  
Kelson D. Chabak ◽  
Akhil Raj Kumar Kalapala ◽  
...  

2009 ◽  
Vol 1201 ◽  
Author(s):  
Jae-Kwan Kim ◽  
Jun Young Kim ◽  
Seung-Cheol Han ◽  
Joon Seop Kwak ◽  
Ji-Myon Lee

AbstractThe etch rate and surface morphology of Zn-containing oxide and HfO2 films after wet chemical etching were investigated. ZnO could be easily etched using each acid tested in this study, specifically sulfuric, formic, oxalic, and HF acids. The etch rate of IGZO was strongly dependent on the etchant used, and the highest measured etch rate (500 nm/min) was achieved using buffered oxide etchant at room temperature. The etch rate of IGZO was drastically increased when sulfuric acid at concentration greater than 1.5 molar was used. Furthermore, etching of HfO2 films by BF acid proceeded through lateral widening and merging of the initial irregular pits.


Author(s):  
Xiaoxu Liu ◽  
Kohei Natsume ◽  
Satoru Maegawa ◽  
Fumihiro Itoigawa

Abstract To realize the high performance of CVD diamond coated tools, a tool edge shaping process named pulse laser grinding (PLG) was developed with short pulse laser in our group previously. In this study, femtosecond laser was innovatively to be used to conduct the PLG process, since femtosecond laser is famous for its less thermal impact and some newly reported surface modification effect. The results show that PLG processing under high laser fluence of femtosecond laser could achieve roundness around 1 μm, which is similar to that of conventional PLG process with nanosecond laser, although the roughness of processed surface has been worse due to the redeposited debris. Furthermore, an interesting phenomenon has been confirmed again that under low laser fluence irradiation of femtosecond laser, the CVD diamond surface shows improved crystallinity of diamond structure. Based on this, a two-step tool edge processing method was proposed, which could realize the edge shaping and surface modification together with one laser processor. And the results show that the processed tool edge with much less edge roundness and surface roughness, and the tip part with better diamond crystallinity, indicating that sharper and hardness tool edge could be possibly to be realized with femtosecond laser.


Optik ◽  
2020 ◽  
Vol 223 ◽  
pp. 165620
Author(s):  
Haoyu Dong ◽  
Yu Huang ◽  
Youmin Rong ◽  
Chunmeng Chen ◽  
Wenyuan Li ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
pp. 188-192 ◽  
Author(s):  
Adam Berlie ◽  
Ian Terry ◽  
Stephen P. Cottrell ◽  
Wanbiao Hu ◽  
Yun Liu

Evidence for magnetic order at room temperature in a colossal permittivity dielectric indicates a potential for the development of magneto-electronic devices.


2013 ◽  
Vol 9 (3) ◽  
pp. 168-173 ◽  
Author(s):  
Jianming Cai ◽  
Alex Retzker ◽  
Fedor Jelezko ◽  
Martin B. Plenio

1983 ◽  
Vol 21 ◽  
Author(s):  
M. Doukoure ◽  
D. Gignoux ◽  
F. Sayetat

ABSTRACTHoAlGa is hexagonal at room temperature. It undergoes two magnetic transitions succesively at TN = 32 K from a paramagnetic to a triangular antiferromagnetic state where the Ho moments lie in the basal plane and at Tt = 18 K in the course of which the moments rotate toward c giving rise to a colinear antiferromagnetic arrangement. X-ray experiments performed between 5 and 300 K allow to determine the crystal evolution through the two transitions. The hexagonal symmetry is not lowered through the transitions; this result is compatible with the observed magnetic groups. The thermal expansion curves show a very anisotropic behaviour of the lattice parameters. The “c” parameter shrinks below TN and this anomaly is to be related to the magnetic order. Along a, a positive thermal anomaly appears below 70 K and this can be interpreted by crystal field effects. Stability of magnetic structures is discussed with regard to exchange interactions and magnetocrystalline anisotropy.


Sign in / Sign up

Export Citation Format

Share Document