scholarly journals Amplification by stimulated emission of nitrogen-vacancy centres in a diamond-loaded fibre cavity

Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4505-4518
Author(s):  
Sarath Raman Nair ◽  
Lachlan J. Rogers ◽  
Xavier Vidal ◽  
Reece P. Roberts ◽  
Hiroshi Abe ◽  
...  

AbstractLaser threshold magnetometry using the negatively charged nitrogen-vacancy (NV−) centre in diamond as a gain medium has been proposed as a technique to dramatically enhance the sensitivity of room-temperature magnetometry. We experimentally explore a diamond-loaded open tunable fibre-cavity system as a potential contender for the realisation of lasing with NV− centres. We observe amplification of the transmission of a cavity-resonant seed laser at 721 nm when the cavity is pumped at 532 nm and attribute this to stimulated emission. Changes in the intensity of spontaneously emitted photons accompany the amplification, and a qualitative model including stimulated emission and ionisation dynamics of the NV− centre captures the dynamics in the experiment very well. These results highlight important considerations in the realisation of an NV− laser in diamond.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Jan Jeske ◽  
Desmond W. M. Lau ◽  
Xavier Vidal ◽  
Liam P. McGuinness ◽  
Philipp Reineck ◽  
...  

2021 ◽  
Vol 42 (11) ◽  
pp. 112801
Author(s):  
Feng Liang ◽  
Degang Zhao ◽  
Zongshun Liu ◽  
Ping Chen ◽  
Jing Yang ◽  
...  

Abstract In this work, we reported the room-temperature continuous-wave operation of 6.0 W GaN-based blue laser diode (LD), and its stimulated emission wavelength is around 442 nm. The GaN-based high power blue LD is grown on a c-plane GaN substrate by metal organic chemical vapor deposition (MOCVD), and the width and length of the ridge waveguide structure are 30 and 1200 μm, respectively. The threshold current is about 400 mA, and corresponding threshold current density is 1.1 kA/cm2.


ACS Nano ◽  
2013 ◽  
Vol 7 (12) ◽  
pp. 10912-10919 ◽  
Author(s):  
Silvia Arroyo-Camejo ◽  
Marie-Pierre Adam ◽  
Mondher Besbes ◽  
Jean-Paul Hugonin ◽  
Vincent Jacques ◽  
...  

2015 ◽  
Vol 15 (15&16) ◽  
pp. 1397-1419
Author(s):  
Ming-Xing Luo ◽  
Hui-Ran Li

Teleportations of quantum gates are very important in the construction of quantum network and teleportation-based model of quantum computation. Assisted with nitrogenvacancy centers, we propose several schemes to teleport the quantum CNOT gate. Deterministic CNOT gate may be implemented on a remote two-photon system, remote two electron-spin system, hybrid photon-spin system or hybrid spin-photon system. Each photon only interacts with one spin each time. Moreover, quantum channel may be constructed by all combinations of the photon or electron-spin entanglement, or their hybrid entanglement. Since these electron-spin systems have experimentally shown a long coherence time even at the room temperature, our schemes provide useful ways for long-distance quantum applications.


2008 ◽  
Vol 53 (9(5)) ◽  
pp. 2800-2802 ◽  
Author(s):  
Claus Klingshirn ◽  
Johannes Fallert ◽  
Robert Hauschild ◽  
Mario Hauser ◽  
Heinz Kalt ◽  
...  

1991 ◽  
Vol 228 ◽  
Author(s):  
H. Luo ◽  
N. Samarth ◽  
J. K. Furdyna ◽  
H. Jeon ◽  
J. Ding ◽  
...  

ABSTRACTSuperlattices and quantum wells of Znl-xCdxSe/ZnSe, and heterostructures based on ZnSe/CdSe digital alloys have been grown by molecular beam epitaxy (MBE). Their optical properties were studied with particular emphasis on excitonic absorption and photopumped stimulated emission. Excitonic absorption is easily observable up to 400 K, and is characterized by extremely large absorption coefficients (α = 2×105cm−1). Optically pumped lasing action is obtained at room temperature with a typical threshold intensity of 100 kW/cm2. The lasing mechanism in these II-VI quantum wells appears to be quite different from that in the better studied III-V materials: in our case, the onset of stimulated emission occurs before the saturation of the excitonic absorption, and the stimulated emission occurs at an energy lower than that of the excitonic absorption.


2018 ◽  
Vol 924 ◽  
pp. 281-284 ◽  
Author(s):  
Yuta Abe ◽  
Takahide Umeda ◽  
Mitsuo Okamoto ◽  
Shinobu Onoda ◽  
Moriyoshi Haruyama ◽  
...  

We investigated single photon sources (SPSs) in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) by means of confocal microscope techniques. We found SPSsonlyin 4H-SiC/SiO2interface regions of wet-oxide C-face MOSFETs. The other regions of MOSFETs such as source, drain and well did not exhibit SPSs. The luminescent intensity of the SPSs at room temperature was at least twice larger than that of the most famous SPSs, the nitrogen-vacancy center, in diamond. We examined four types of C-face and Si-face 4H-SiC MOSFETs with different oxidation processes, and found that the formation of the SPSs strongly depended on the preparation of SiC/SiO2interfaces.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4155
Author(s):  
Tengfei Kong ◽  
Hongde Liu ◽  
Liyun Xue ◽  
Weiwei Wang ◽  
Shahzad Saeed ◽  
...  

We grew a series of co-doped LiNbO3 crystals with fixed 1.5 mol % ZrO2 and various MgO concentrations (1.0, 3.0, 4.0, 6.0 mol %), and investigated their optical properties and defect structures. By 3.0 mol % MgO co-doping, the optical damage resistance at 532 nm reached 6.5 × 106 W/cm2, while the phase-matching temperature for doubling 1064 nm was only 29.3 °C—close to room temperature—which was conducive to realizing the 90° phase matching at room temperature by slightly modulating the incident angle of the fundamental beam. Notably, we found that the phase-matching temperature increased linearly with the increase of MgO doping, and this linear dependence helped us to grow the high-quality crystal for room temperature 90° phase matching. Moreover, the defect analysis indicated that the linear tuning of phase-matching temperature might be attributed to Mg Li + + Zr Nb − neutral pairs in crystals.


Sign in / Sign up

Export Citation Format

Share Document