scholarly journals Electrospun ZnSnO3/ZnO Composite Nanofibers and Its Air-Sensitive Properties

Author(s):  
Songtao Dong ◽  
Xiaoyun Jin ◽  
Junlin Wei ◽  
Hongyan Wu

In this work, a novel heterojunction based on ZnSnO3/ZnO nanofibers was prepared using electrospinning method. The crystal, structural and surface compositional properties of sample based on ZnSnO3 and ZnSnO3/ZnO composite nanofibers were investigated by X-ray diffractometer (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET). Compared to pure ZnSnO3 nanofibers, the ZnSnO3/ZnO heterostructure nanofibers display high sensitivity and selectivity response with fast response towards ethanol gas at low operational temperature. The sensitivity response of sensor based on ZnSnO3/ZnO composite nanofibers were 19.6 towards 50 ppm ethanol gas at 225°C, which was about 1.5 times superior than that of pure ZnSnO3 nanofibers, which can be owed mainly to the presence of oxygen vacancies and the synergistic effect between ZnSnO3 and ZnO.

2013 ◽  
Vol 562-565 ◽  
pp. 446-451 ◽  
Author(s):  
Y. Li ◽  
J.N. Ding ◽  
N.Y. Yuan

We used an electrospinning method to produce ZnO nanofibers for propanol sensing. ZnO nanofibers were electrospun from a solution containing poly(4-vinyl phenol) (PVP) and zinc acetate. The morphology and structure of the as-prepared ZnO nanofibers have been characterized by scanning electron microscopy and X-ray diffraction, respectively. The calcination process of the ZnO/PVP composite nanofibers brought forth polycrystalline würtzite ZnO nanofibers with diameters of 50-70 nm. Under the optimized experimental conditions, the prepared product shows the desirable sensing characteristics towards propanol at 400°C. The high sensitivity, reversible response and good selectivity indicated its potential application as a chemical sensor.


2021 ◽  
Vol 21 (8) ◽  
pp. 4400-4405
Author(s):  
Junyeop Lee ◽  
Nam Gon Do ◽  
Dong Hyuk Jeong ◽  
Sae-Wan Kim ◽  
Maeum Han ◽  
...  

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.


2012 ◽  
Vol 268-270 ◽  
pp. 580-583 ◽  
Author(s):  
Yong Tang Jia ◽  
Cui Wu ◽  
Feng Chun Dong ◽  
Gang Huang ◽  
Xian Hua Zeng

The composite nanofiber membranes of poly (ε-caprolactone)/poly(vinyl pyrrolidone) (PCL/PVP) containing silver nanoparticles were prepared by electrospinning method. The morphology of composite nanofibers was characterized by scanning electron microscopy (SEM). The silver nanoparticles on the electrospun fibers were characterized by X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The contact angle and water uptake of PCL/PVP/Ag nanofiber membranes were measured. The SEM photos indicated that the average diameter of the fibers was significantly decreased with the addition of silver nanoparticles. The X-Ray images showed that Ag nanoparticles were distributed on the surface of nanofiber membranes. When the PVP mole ratio was higher than 15%, the nanofiber membranes showed good hydrophilic property. The PCL/PVP/Ag nanofiber membranes could be applied to prepare wound dressing.


2020 ◽  
Vol 10 (11) ◽  
pp. 1777-1787
Author(s):  
Yadian Xie ◽  
Shanshan Wang ◽  
Ning Fu ◽  
Yan Yang ◽  
Xingliang Liu ◽  
...  

Carbon dots (CDs) also nitrogen-doped CDs (N-CDs) were produced by green hydrothermal synthesis using Pea and ethanediamine as the carbon and nitrogen source, separately. Transmission electron microscopy (TEM) images displayed that the prepared CDs and N-CDs were well dispersed, had a spherical morphology. X-ray diffraction (XRD) figures of CDs and N-CDs presented a graphitic amorphous structure. Fourier transform infrared spectroscopy (FT-IR) verified that CDs and N-CDs carried many different hydrophilic groups (for example hydroxyl, carboxyl/carbonyl, amide, amino groups) on the surface, X-ray photoelectron spectroscopy (XPS) together verified this result. However, the optical properties and fluorescence quantum yield for N-CDs were obviously superior to those of CDs. Furthermore, the prepared N-CDs displayed outstanding advantages including low toxicity, satisfactory biocompatibility, and excellent chemical stability. More prominently, the prepared N-CDs could detect Hg2+ ions with high sensitivity and selectivity in both water samples and HeLa cells.


2011 ◽  
Vol 356-360 ◽  
pp. 565-568
Author(s):  
Shao Hong Wei ◽  
Mei Hua Zhou ◽  
Wei Ping Du

Pure ZnO and SnO2-ZnO nanofibers were synthesized by electrospinning method and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and methanol sensing properties of these fibers were investigated. The results indicate that the 20 wt% SnO2-ZnO sensor exhibits considerable sensitivity, rapid response, and good selectivity against methanol at 200 °C due to the special 1D fibers properties and the promoting effect of SnO2/ZnO heterojunction structure. The methanol sensing mechanism of SnO2-ZnO nanofibers were also discussed.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950297
Author(s):  
Xiang-Bing Li ◽  
Shu-Yi Ma ◽  
Fu-Rong Li ◽  
Yu-Xiang Zhao ◽  
Xiao-Bin Liu ◽  
...  

The properties of nanomaterials usually depend on their microstructures, the same material of different microstructures could be used for various applications. However, most devices could only synthesize a single microstructure, so it is meaningful that the different microstructures were synthesized by one method. In our study, electrospinning was applied to fabricate ZnO nanofibers and nanoparticles. In this approach, Zn(Ac)/PVP composite fibers of different component ratio were synthesized by electrospinning method which was subsequently calcined and formed ZnO nanofibers and nanoparticles. The microstructure, chemical composition and gas sensing were investigated with scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and WS-60A gas sensing measurement system. The synthesis mechanisms of ZnO nanofibers and nanoparticles were discussed in detail.


2020 ◽  
Author(s):  
Jin Hyuck Heo ◽  
Jin Kyoung Park ◽  
Yang (Michael) Yang ◽  
Sang Hyuk Im

Nanoscale ◽  
2021 ◽  
Author(s):  
Zhengyou Zhu ◽  
Xiaxia Xing ◽  
Dongliang Feng ◽  
Zhenxu Li ◽  
Yingying Tian ◽  
...  

Hydrogen sensing simultaneously endowed with fast response, high sensitivity and selectivity are highly desired in detecting hydrogen leakages such as in those hydrogen-driven vehicles and space rockets. Here, hydrogen sensing...


2021 ◽  
Vol 15 (1) ◽  
pp. 45-50
Author(s):  
Minh Vuong Nguyen ◽  
◽  
Ngoc Khoa Truong Nguyen ◽  

NiO/ZnO hierarchical nanostructures were synthesized by a combination of electrospinning, hydrothermal and ultraviolet (UV)-assisted deposition. Initially, ZnO nanofibers were synthesized by electrospinning method following thermal oxidation. Subsequently, ZnO hierarchical nanostructures were synthesized by hydrothermal method using ZnO nanofibers as templates. Finally, NiO nanoparticles were deposited on ZnO surface by UV-assisted deposition method. Morphology and characteristics of the material were determined by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and photoluminescence spectrum (PL). The results showed that the NiO/ZnO hierarchical nanostructures with high open space were obtained. NiO/ZnO crystals showed hexagonal structure of ZnO without phase formation of NiO. PL spectra of the NiO/ZnO material showed emission peaks shift towards longer wavelengths in the visible region with increasing the content of NiO nanoparticles.


2018 ◽  
Vol 27 (4) ◽  
pp. 317 ◽  
Author(s):  
Van Hoang Nguyen ◽  
Van Dung Nguyen ◽  
Quang Dat Do ◽  
Thi Minh Nguyet Quan ◽  
Manh Hung Chu ◽  
...  

In the present study, on-chip ZnO nanofibers were fabricated by means of the electrospinning technique followed by a calcination process at 600 oC towards the gas sensor application. The morphology, composition, and crystalline structure of the as-spun and annealed ZnO nanofibers were investigated by field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD), respectively. The findings show that spider-net like ZnO nanofibers with a diameter of 60 – 100 nm were successfully synthesized without any incorporation of impurities into the nanofibers. The FESEM images also reveal that each nanofiber is composed of many nanograins. The combination of experimental and calculated X-ray diffraction data indicate that ZnO nanofibers were crystallized in hexagonal wurtzite structure. For the gas sensing device application, the ZnO nanofibers-based sensors were tested with the nitrogen dioxide gas in the temperature range of 200 oC to 350 oC and concentrations from 2.5 ppm to 10 ppm. The sensing property results indicate that at the optimal working temperature of 300 oC, the ZnO nanofibers-based sensors exhibited a maximum response of 30 and 166 times on exposure of 2.5 and 10 ppm NO2 gas, respectively. The presence of nanograins within nanofibers, which results in further intensification of the resistance modulation, is responsible for such high gas response.


Sign in / Sign up

Export Citation Format

Share Document