Method for synthesizing ZnO of different nanostructures by electrospinning and study of their gas sensing properties

2019 ◽  
Vol 33 (25) ◽  
pp. 1950297
Author(s):  
Xiang-Bing Li ◽  
Shu-Yi Ma ◽  
Fu-Rong Li ◽  
Yu-Xiang Zhao ◽  
Xiao-Bin Liu ◽  
...  

The properties of nanomaterials usually depend on their microstructures, the same material of different microstructures could be used for various applications. However, most devices could only synthesize a single microstructure, so it is meaningful that the different microstructures were synthesized by one method. In our study, electrospinning was applied to fabricate ZnO nanofibers and nanoparticles. In this approach, Zn(Ac)/PVP composite fibers of different component ratio were synthesized by electrospinning method which was subsequently calcined and formed ZnO nanofibers and nanoparticles. The microstructure, chemical composition and gas sensing were investigated with scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and WS-60A gas sensing measurement system. The synthesis mechanisms of ZnO nanofibers and nanoparticles were discussed in detail.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiangfeng Chu ◽  
Junsong Liu ◽  
Shiming Liang ◽  
Linshan Bai ◽  
Yongping Dong ◽  
...  

In this paper, g-C3N4-WO3 composite materials were prepared by hydrothermal processing. The composites were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption, respectively. The gas sensing properties of the composites were investigated. The results indicated that the addition of appropriate amount of g-C3N4 to WO3 could improve the response and selectivity to acetone. The sensor based on 2 wt% g-C3N4-WO3 composite showed the best gas sensing performances. When operating at optimum temperature of 310°C, the responses to 1000 ppm and 0.5 ppm acetone were 58.2 and 1.6, respectively, and the ratio of the S1000 ppm acetone to S1000 ppm ethanol reached 3.7.


2011 ◽  
Vol 356-360 ◽  
pp. 565-568
Author(s):  
Shao Hong Wei ◽  
Mei Hua Zhou ◽  
Wei Ping Du

Pure ZnO and SnO2-ZnO nanofibers were synthesized by electrospinning method and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and methanol sensing properties of these fibers were investigated. The results indicate that the 20 wt% SnO2-ZnO sensor exhibits considerable sensitivity, rapid response, and good selectivity against methanol at 200 °C due to the special 1D fibers properties and the promoting effect of SnO2/ZnO heterojunction structure. The methanol sensing mechanism of SnO2-ZnO nanofibers were also discussed.


2016 ◽  
Vol 697 ◽  
pp. 737-740 ◽  
Author(s):  
Ming Jing Wang ◽  
Hui Ming Ji ◽  
Ya Lu Chen ◽  
Qian Qian Jia

ε-Fe2O3 is a rare and metastable iron (III) oxide phase. ε-Fe2O3/SiO2 composites were prepared by combining the reverse-micelle and sol-gel methods. An appropriate amount of Ba2+ was needed in this system to promote the formation of ε-Fe2O3 nanorods in SiO2. The size of nanorods varied with different Ba2+ addition amount and sintering procedure. Then pure ε-Fe2O3 nanorods were obtained after stripping SiO2 by etching due to NaOH aqueous solution. The as-synthesized ε-Fe2O3 nanorods were discussed using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). Interestingly, metastable ε-Fe2O3 nanorods showed a promising performance for the response for ethanol, compared with the stable phases of α-Fe2O3 and γ-Fe2O3. It indicates that nanostructure ε-Fe2O3 (including ε-Fe2O3 nanorods) could be a valuable material for the fabrication of advanced sensing devices.


2013 ◽  
Vol 562-565 ◽  
pp. 543-548 ◽  
Author(s):  
Li Zhang ◽  
Fu Bo Gu ◽  
Zhi Hua Wang ◽  
Dong Mei Han ◽  
Guang Sheng Guo

In2O3/multi-walled carbon nanotube (MWCNT) nanocomposites containing different MWCNT contents were synthesized via direct growth of In2O3 nanoparticles on the functionalized MWCNTs. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results exhibited that In2O3 nanoparticles with a diameter of approximate 10 nm were densely decorated on the surface of the MWCNTs. The gas sensitive performance of the nanocomposites to ethanol was also investigated. It was found that In2O3/MWCNTs sensor showed much higher response than that of the pure In2O3 sensor. Moreover, the sensing mechanism was discussed.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Vaijayanti Namdeo Nande ◽  
Diana Kostyukova ◽  
Jeonghee Choi ◽  
Yong Hee Chung

Layers of cerium dioxide nanoparticles were prepared on titanium by electrodeposition with organic solution. Three concentrations of cerium ions were used at 31.6 V. The organic solution was isobutanol and titanium foils were used as anodes and cathodes. Currents were monitored during the electrodeposition. Deposition times ranged from 0.5 to 8 h. Deposited Deposited layers were calcined at 700 K for 30 min. The morphology and composition of the deposited layers were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). As-prepared and calcined deposition layers were assayed to be cerium dioxide. The average crystallite size increased from 4 to 7 nm through calcination at 700 K. Sizes of calcined cerium oxide agglomerates were ranging from 73 to 146 nm for 30 min deposition and 209 to 262 nm for 8 h deposition. The electrodeposition efficiencies of 0.5 h deposition at three concentrations were measured to be highest.


2021 ◽  
Author(s):  
Pimpan Leangtanom ◽  
Anurat Wisitsoraat ◽  
Kata Jaruwongrangsee ◽  
Narong Chanlek ◽  
Adisorn Tuantranont ◽  
...  

Abstract In this work, CuO-loaded tetragonal SnO2 nanoparticles (CuO/SnO2 NPs) were synthesized using precipitation/impregnation methods with varying Cu contents of 0–25 wt% and characterized for H2S detection. The material phase, morphology, chemical composition and specific surface area of NPs were evaluated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller analysis. From gas-sensing data, the H2S responses of SnO2 NPs were greatly enhanced by CuO loading particularly at the optimal Cu content of 20 wt%. The 20 wt%CuO/SnO2 sensor showed an excellent response of 1.36⋅105 towards 10 ppm H2S and high H2S selectivity against H2, SO2, CH4 and C2H2 at a low optimum working temperature of 200°C. In addition, the sensor provided fast response and a low detection limit of less than 0.15 ppm. The CuO-SnO2 sensor could therefore be a potential candidate for H2S detection in environmental applications.


Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 67 ◽  
Author(s):  
Bharat Sharma ◽  
Ashutosh Sharma ◽  
Monika Joshi ◽  
Jae-ha Myung

A highly sensitive and selective NO2 gas sensor dependent on SnO2/ZnO heterostructures was fabricated using a sputtering process. The SnO2/ZnO heterostructure thin film samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). Sensors fabricated with heterostructures attained higher gas response (S = 66.9) and quicker response-recovery (20 s, 45 s) characteristics at 100 °C operating temperature towards 100 ppm NO2 gas efficiently in comparison to sensors based on their mono-counterparts. The selectivity and stability of SnO2/ZnO heterostructures were studied. The more desirable sensing mechanism of SnO2/ZnO heterostructures towards NO2 was described in detail.


Sign in / Sign up

Export Citation Format

Share Document