scholarly journals Membrane Fatty Acids And Physiological Disorders in Cold Stored ‘Golden Delicious’ Apples Treated with 1-MCP and Calcium Chloride

Author(s):  
Maria Dulce Antunes ◽  
Ana Clara Guimarães ◽  
Custódia Gago ◽  
Adriana Guerreiro ◽  
Jorge Panagopoulos ◽  
...  

The present research intents to study the evolution of the skin fatty acids and physiological disorders through cold storage in ‘Golden Delicious’ apples treated with 1-MCP and calcium. Harvested fruit were treated with calcium chloride (Ca), 1-MCP (MCP), Ca+MCP or no treatment (control) then subjected to cold storage at 0.5 ºC for 6 months. Fatty acids composition, Malondialdehyde (MDA) and the physiological disorders bitter pit (BP), superficial scald and diffuse skin browning (DSB) were measured at harvest and after storage plus 7 days shelf-life at room temperature ≈22 ºC. Palmitic acid decreased and linoleic acid increased through time, while oleic and stearic acids had few changes. Unsaturated/saturated fatty acids and MDA increased through time, despite Ca and Ca+MCP were related to lower MDA and lower BP and rotten fruit, after cold storage and shelf-life. In those treatments, the unsaturated/saturated fatty acids were higher, mainly due to higher linoleic acid and lower palmitic acids. Further research is needed to clarify the changes in membrane properties and the effect of some treatments in response to chilling injury through storage.

2016 ◽  
Vol 211 ◽  
pp. 440-448 ◽  
Author(s):  
Custódia M.L. Gago ◽  
Adriana C. Guerreiro ◽  
Graça Miguel ◽  
Thomas Panagopoulos ◽  
Manuela M. da Silva ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Leila Taghipour ◽  
Majid Rahemi ◽  
Pedram Assar ◽  
Asghar Ramezanian ◽  
Seyed Hossein Mirdehghan

Pomegranate is a perishable superfruit with important human health-promoting phytochemicals. The use of cold storage is inevitable for its long-term preservation. As pomegranate is sensitive to temperatures below 5°C, it is therefore necessary and worthwhile to introduce a postharvest technique that is safe, applicable, and commercially acceptable to maintain the fruit quality under a cold storage condition. The efficacy of intermittent warming (IW) in the form of a single warming period (1 day at 20°C with 70% relative humidity (RH) before returning the treated fruit to storage) during the cold storage of ‘Rabab-e-Neyriz’ pomegranate (70 days at 2 ± 0.5°C and 90 ± 5% RH) was evaluated. To find the best treatment time, warming was performed at 4 temporary interruption points in storage (after 15, 25, 35, or 45 days of storage). For each interruption date, the treated fruit were compared to the controls twice, once immediately after treatment and once at the end of the storage period. It was founded that a single warming period at the right time during cold storage (before irreversible damage occurs) activated multiple mechanisms and physiological responses in pomegranate fruit peel that are significantly responsible for alleviating the severity of chilling damage to this commodity. In other words, warming on the 15th day was the most efficient treatment, resulting in better preservation of unsaturated fatty acids from peroxidation, lower malondialdehyde (MDA) production, and preservation of the unsaturated/saturated fatty acids (UFAs/SFAs) ratio (membrane integrity index) in the peel during storage and lower chilling injury symptoms. Moreover, the content of spermine (Spm) and putrescine (Put) (as important antioxidants acting as membrane safety agents) was significantly increased immediately after treatment, followed by a continuous increase in Spm and a higher level of Put compared to control until the end of storage.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


2015 ◽  
Vol 110 ◽  
pp. 77-85 ◽  
Author(s):  
Custódia M.L. Gago ◽  
Adriana C. Guerreiro ◽  
Graça Miguel ◽  
Thomas Panagopoulos ◽  
Claudia Sánchez ◽  
...  

2008 ◽  
Vol 60 (6) ◽  
pp. 1388-1398 ◽  
Author(s):  
S.F. Zanini ◽  
E. Vicente ◽  
G.L. Colnago ◽  
B.M.S. Pessotti ◽  
M.A. Silva

The effect of dietary conjugated linoleic acid (CLA) in association with two vegetable oil sources on the fatty acids of meat and giblets of broiler chickens was evaluated. Two hundred 21-day-old broiler chickens were distributed in a completely randomized factorial design 2 x 5 (two oil sources, soybean or canola oil; and five levels of CLA, 0.0, 2.5, 5.0, 7.5, and 10.0g/kg). The addition of CLA to the diet resulted in an increase (P<0.05) in CLA deposition in the analyzed tissues. CLA supplementation also reduced (P<0.05) the rate of polyunsaturated to saturated fatty acids in thigh, breast, heart, and gizzard. There was interaction of CLA x oil source (P<0.05). The intake of soybean oil, associated with increasing CLA, resulted in an increase in lipid deposition in edible portions as observed by an increase in the overall content of fatty acids, including CLA, while the use of canola oil, associated with increasing CLA in the diet, resulted in a decrease in lipid content in edible portions, specifically regarding that of saturated fat (P<0.05) in breast meat and liver and in the content of monounsaturated fatty acids (P<0.05) in thigh, breast, liver, and gizzard.


2010 ◽  
Vol 39 (11) ◽  
pp. 2502-2511 ◽  
Author(s):  
Luís Fernando Glasenapp de Menezes ◽  
Gilberto Vilmar Kozloski ◽  
João Restle ◽  
Ivan Luiz Brondani ◽  
Raul Dirceu Pazdiora ◽  
...  

It was evaluated in this study the effect of the type of the diet on duodenal flow of long-chain fatty acids in steers. The tested diets were the following: conventional (feedlot diet composed of 60% corn silage and 40% of concentrate); winter forage silage - rye grass (Lolium multiflorum, Lam); or tropical forage silage - association of millet (Pennisetum americanum, Leeke + alexander grass, Brachiaria plantaginea). Six Charolais × Nellore crossbred steers with cannulas in duodenum were used in a 3 × 3 double Latin square. Dry material intake was similar among the groups (mean of 4,037 g/day), but the intake of total fatty acids and saturated fatty acids were higher in the group fed tropical pasture silage. On the other hand, the animals which received the conventional diet consumed higher quantity of unsaturated fatty acids. Tropical pasture silage provided higher consumption of vacenic acid (C18:1 t-11) and the winter forage silage offered higher consumption of conjugated linoleic acid. The intake of omega-6 fatty acids was higher in the group fed conventional diet and for omega-3, intake was higher in the group fed tropical pasture diet. The total fatty acid flow in the duodenum was not affected by the diets, but in all treatments it was higher than the consumed one. The animals fed diet with concentrate show the greatest changes on the profile of fatty acids during the ruminal fermentation. Conventional diets provide the highest intake of unsaturated fatty acids and the highest availability of vacenic acid in the small intestine, but they do not increase the supply of intestinal conjugated linoleic acid.


2020 ◽  
Vol 12 (18) ◽  
pp. 7547 ◽  
Author(s):  
Rabia Kanwal ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Irrum Babu ◽  
Zarina Yasmin ◽  
...  

Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.


2003 ◽  
Vol 73 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Salvatori ◽  
Maiorano ◽  
Pantaleo ◽  
Brienza ◽  
Filetti ◽  
...  

A diet rich in saturated fatty acids promotes plasmatic cholesterol levels and coronary disease in humans, whereas a high intake of polyunsaturated fatty acids reduces atheromatous plaque thickness. This study aimed at establishing a dietary energy level, which combined with intramuscular vitamin E treatment, would improve the nutritional lipid quality and shelf-life of lamb meat. Twenty male lambs were evaluated in a 2 × 2 factorial experiment: they were fed a low- and normal-energy diet (0.85 and 1.00 UFV NE/kg DM, respectively), and were injected intramuscularly with 0 and 150 IU dl-alpha-tocopheryl acetate/weekly for eight weeks. Thereafter, total fat, cholesterol, fatty acid profile, and lipostability were measured in meat samples. Meat total fat was significantly reduced by low energy intake diet and vitamin E administration. Cholesterol was significantly lower in meat from lambs fed the 0.85 UFV NE/kg DM diet. Vitamin E treatment increased linoleic acid percent values and decreased myristic acid levels. Moreover, linoleic acid percentage was inversely correlated with muscle total fat concentration. Meat sensitivity to lipoperoxidation was inversely correlated with muscle vitamin E concentration. This study demonstrates that nutritional characteristics and shelf-life of meat benefit from a low-energy diet and intramuscular vitamin E treatment.


1963 ◽  
Vol 18 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Wolfgang Heinen ◽  
Ingeborg V. D. Brand

1. Three fatty acid oxidizing enzymes, stearic and oleic acid oxidase as well as lipoxidase have been shown to be present in leaves of Gasteria verricuosa.2. By following the activity of these enzymes after injury we considered that they are involved in cutin synthesis which takes place at the wounded top of the leaf.3. Comparing the activity near the wounded part and the untreated inner sphere of the leaf lead to the conclusion that two of the oxidases (stearic and oleic oxidase) serve as substrate donors for lipoxydase by converting stearic into oleic and the latter into linoleic acid.4. Since the level of polyenic acids in leaves is high in comparison to saturated fatty acids, the activity of stearic and oleic oxidase only increases in the late phase of cutin synthesis, while lipoxydase is highly activated at the top directly after wounding and in the inner part of the leaf 3 - 4 weeks after cutin synthesis has started. At the same time pectinase shows its highest activity, suggesting that the formation of the pectic layer is secondary to the formation of cutin.5. Simultaneously to the enzymatic assays, cutin formation was followed by macro- and microscopic studies.6. The mode of action of lipoxydase and the interrelationship of the oxidizing enzymes in the formation of cutin are discussed and a formula for the structure of Gasteria cutin is given.7. According to the data presented here and the results obtained from literature, a possible scheme for cutin synthesis is given.


Sign in / Sign up

Export Citation Format

Share Document