scholarly journals Fuzzy Logic Controller and Its Application in Brushless DC Motor (BLDC) in Electric Vehicle - A Review

Author(s):  
Chico Hermanu Brillianto Apribowo ◽  
Musyaffa’ Ahmad ◽  
Hari Maghfiroh

<p class="Abstract">Brushless DC motor (BLDC) is one type of electric motor that is widely used, especially in automotive systems. This motor is widely used as a driving force in electric vehicles. BLDC motor is chosen because it has the characteristics of high efficiency, reliability, and a wide speed range. Besides, BLDC motors require less maintenance and can operate quieter than DC motors. Even though it has many advantages, in its application the use of BLDC motors in electric vehicles is often less than optimal. The use of a conventional control system proportional integral derivative (PID) still has many weaknesses, especially in response to changes in load and track conditions. In this study, a control system was designed to regulate the speed of the BLDC motor, using a combination of Fuzzy and PID methods. Based on the results of the tests that have been done, the Fuzzy-PID control can provide better and more stable performance than using the conventional PI control.</p>

2014 ◽  
Vol 687-691 ◽  
pp. 183-186 ◽  
Author(s):  
Yu Hong Liang ◽  
Hai Bo Huang ◽  
Deng Liang Cheng ◽  
Jian Ping Lan

Brushless DC Motor is a kind of a new motor which commutation signals replaces traditional motor mechanical structure with electronic signals. Square wave brushless DC motor can be divided into sensor motor and sensorless motor. Position sensor will increase system cost, motor size and maintenance difficulty, which bring about limitation and limits to promote its application in all areas. This project designs sensorless BLDC Motor control system with the core of the stm32 micro-controller and uses Back-EMF zero-crossing detection method. In the system designing software control algorithm, drawing schematic diagram of hardware and making PCB board have been completed dependently. The experimental results show that the system can well realize the starting and running of sensorless BLDC Motor control system, and have a good measure of protection.


Author(s):  
J. Karthikeyan ◽  
R. Dhanasekaran

The brushless DC motor (BLDC motor) drive is used in several high performance applications ranging from servos to traction drives, due to several distinct advantages such as high power density, high efficiency, fast response and maintenance free. BLDC motor is usually driven by hard switching PWM inverter, which normally has higher switching losses. In recent years, these are several soft switching inverters presented. But there are many disadvantages such as high device voltage stress and large DC link voltage ripple and so on. This paper presents a transformer based resonant dc link inverter for brushless dc motor. The modulation strategies can be classified into two kinds according to the turn-off sequence of the two switches of the pair of switches. Here, dc link voltage notches during chopping switches commutation for all switches working in zero voltage switching condition. The operating principle of soft switching and control scheme are presented. The proposed scheme is verified with the simulation and experimental results.


Author(s):  
Ankit Rawat ◽  
Mohd Bilal ◽  
Mohd Fazle Azeem

Brushless DC Motor (BLDC) is gaining more and more popularity as one of the best electrical drives nowadays due to advantages like high efficiency, low maintenance, good reliability & wide dynamic response. The traditional brushed motor speed regulation is essentially effective in low speed and unable to lower the commutation torque ripple in high speed range. Speed regulation of Brushless DC (BLDC) motor is done by utilizing PI controller. The PI controller output act as  the input to the variable voltage block. The mathematical modeling of BLDC motor is additionally shown here. The BLDC motor is supplied from the inverter while the rotor position and speed are the input here. The detailed mathematical model of the anticipated drive system is developed and simulated using MATLAB/Simulink environment.  Principle of operation of using component is examined and therefore the simulation results are reported here to verify the theoretical analysis.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3989-3993

This research Paper proposes the Brushless DC motors control (BLDC) could accomplish higher execution looking into effectiveness in examination for old brushed DC motor controlling which is difficult to control because it requires a phase for switching circuit. This work proposes a fuzzy logic control for brushless DC motor for axis based on Hall Effect by applying sensor control system and also it produces brushless motor for rearranging the three phase conduction mode model. At long last this paper may be with create efficient control methodologies on enhance driving dynamics on the mechanical dynamic consider of propulsion method. The recommended control method stabilizes those controls services (speeds) done by controller of brushless DC motor drive (BLDC). On behalf of settling 2 wheels also physical favorable circumstances of BLDC motors are associated straight forwardly of the tires by improving the rotor speed. The parameters such as power factor, rotor speed, torque ripple, EMF is compensated & simulation results are tabulated.


Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2013 ◽  
Vol 3 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Krzysztof Krykowski ◽  
Janusz Hetmańczyk

Abstract Two constant current models of Permanent Magnet Brushless Direct Current Motor (PM BLDC) are presented in the paper. In the first part of the paper principle of operation, basic properties and mathematical equations describing PM BLDC models are given. Then, two different constant current models of PM BLDC motor are considered: In the first model, PM BLDC motor is approximated with dc motor; in the second model, modified constant current model is applied with additional block, which is used to take into account the impact of inductance on torque-speed characteristics. In order to verify these models, torque-speed characteristics have been determined and compared for different motor supply voltages. After running a series of simulation and laboratory tests, we have found that this modified model (which makes allowance for the influence of inductance on torque-speed characteristics) ensures obtaining torque-speed characteristics identical to those of the real motor. Therefore, this model may be recommended for those simulation tests which do not consider effects occurring inside the electronic commutator-motor circuit. However, approximation of PM BLDC motor with dc motor is not recommended in computer tests.


Sign in / Sign up

Export Citation Format

Share Document