scholarly journals Constant Current Models of Brushless DC Motor

2013 ◽  
Vol 3 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Krzysztof Krykowski ◽  
Janusz Hetmańczyk

Abstract Two constant current models of Permanent Magnet Brushless Direct Current Motor (PM BLDC) are presented in the paper. In the first part of the paper principle of operation, basic properties and mathematical equations describing PM BLDC models are given. Then, two different constant current models of PM BLDC motor are considered: In the first model, PM BLDC motor is approximated with dc motor; in the second model, modified constant current model is applied with additional block, which is used to take into account the impact of inductance on torque-speed characteristics. In order to verify these models, torque-speed characteristics have been determined and compared for different motor supply voltages. After running a series of simulation and laboratory tests, we have found that this modified model (which makes allowance for the influence of inductance on torque-speed characteristics) ensures obtaining torque-speed characteristics identical to those of the real motor. Therefore, this model may be recommended for those simulation tests which do not consider effects occurring inside the electronic commutator-motor circuit. However, approximation of PM BLDC motor with dc motor is not recommended in computer tests.

Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 907-912
Author(s):  
Marek Pawel Ciurys

AbstractField-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network – converter - BLDC motor was carried out.


2014 ◽  
Vol 687-691 ◽  
pp. 183-186 ◽  
Author(s):  
Yu Hong Liang ◽  
Hai Bo Huang ◽  
Deng Liang Cheng ◽  
Jian Ping Lan

Brushless DC Motor is a kind of a new motor which commutation signals replaces traditional motor mechanical structure with electronic signals. Square wave brushless DC motor can be divided into sensor motor and sensorless motor. Position sensor will increase system cost, motor size and maintenance difficulty, which bring about limitation and limits to promote its application in all areas. This project designs sensorless BLDC Motor control system with the core of the stm32 micro-controller and uses Back-EMF zero-crossing detection method. In the system designing software control algorithm, drawing schematic diagram of hardware and making PCB board have been completed dependently. The experimental results show that the system can well realize the starting and running of sensorless BLDC Motor control system, and have a good measure of protection.


Jurnal METTEK ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Wayan Widhiada ◽  
Made Widiyarta ◽  
K.P. Arya Utama

Brushless DC motor adalah salah satu jenis motor sinkron yang diberi arus DC yang bersumber dari inverter atau power supply. Motor AC menghasilkan arus AC yang dapat menggerakan motor. Pada dasarnya kecepatan motor dapat di atur menggunakan kontroler yang menghitung seberapa besar keluaran yang harus dihasilkan. Pada umumnya input dari kontroler berupa tuas (naik – turun atau putar) dan tombol untuk input awalnya. Oleh Karena itu dilakukan penelitian untuk mengganti input yang mengatur kecepatan motor BLDC. Kontrol kecepatan motor BLDC berbasis logika fuzzy adalah suatu system kontrol yang mengganti input main stream dari kontroler menjadi sensor beban, dan dimana pembacaanya akan dikontrol oleh logika fuzzy untuk mengatur control kecepatan motor BLDC. Penelitian dilakukan dengan dua cara yaitu simulasi dan eksperimen prototype dengan pemberian beban pada sensor yaitu 10 kg, 20 kg, 30 kg, 40 kg dan 50 kg sebagai inputnya. Hasil dari pengujian dan penghitungan yang didapat pada setiap pembebanan menghasilkan kecepatan yang stabil yaitu rata – rata 0.25 detik dengan kecepatan yang hamper setara dengan referensinya. Error pada kecepatan yang dihasilkan antara simulasi dan prototype sangat kecil yaitu kurang dari 1% pada masing – masing pembebanan. Brushless DC motor is one type of synchronous motor that is given a DC current from the inverter or power supply sourced. It produces an AC current that can drive the motor. Basically the motor speed can be set using a controller to compute the result of output. In general, the input from the controller is like a handle (up – down or twist) and a button for initial input. Therefore the research has changed the input that regulates the speed of the BLDC motor. BLDC motor speed is controlled based on fuzzy logic. Fuzzy logic is a control who help load sensor to replace the mainstream input like handle, and where the reader will be directed by logic to determine the speed of the BLDC motor. The research is carried out in two techniques, called simulation and experiment. The prototype is testing with the load on 10 kg, 20 kg, 30 kg, 40 kg and 50 kg as an input. The results of the tests is obtained at each loading resulted in a stable speed which is an average of 0.25 seconds with a speed that is almost the same as the reference. The error signal of the speed is produced between the simulation and prototype is very small, which is less than 1% in each load.


Author(s):  
Muhamad Ariff Khalid ◽  
Raja Nor Firdaus Kashfi Raja Othman ◽  
Nor Aishah Md Zuki ◽  
Fairul Azhar Abdul Shukor ◽  
Md Nazri Othman ◽  
...  

<span lang="EN-US">Brushless DC (BLDC) motor is widely used for various applications such as transportation. BLDC motor has many advantages compared to brush motor such as more compact, high robustness and simplest construction. The maintenance of this motor also low compared to brush motor due to absent of the brush inside the motor. For electric bicycle application, the conventional motor has low electromagnetic torque because not properly designed. It faces low torque density as the motor in full load condition especially during climb uphill. In this research, an optimum magnetic energy is being determine by proper selection of permanent magnet size. In addition, this research also increases the input current in dynamic condition into the designed BLDC motor. Finite element method (FEM) is used to analyze other performance characteristic of improved motor such as back electromotive force (EMF), electromagnetic torque, flux linkage, and stator flux density. Parameter for improve the current motor are selected and varied based on the required specification. In conclusion, the research proposed the new motor specification that has highest electromagnetic torque of brushless DC motor. Finally, this research provides guidelines, suggestions and proposes a better improved structure in optimize the magnetic energy in BLDC motor.</span>


2020 ◽  
Vol 10 (2) ◽  
pp. 35-40
Author(s):  
Pálma Kapitány ◽  
József Lénárt

This paper deals with designing and development of a bench for the test of a brushless DC motor. The bench contains a hydraulic circuit, which provides a controllable load for the motor. The hydraulic system is equipped with a hydraulic pump and choke valve and a manometer. The mechanical connection between the hydraulic pump and the BLDC motor is designed with two clutches and structure of two sheet plates. The bench contains a torque meter, which is built between the two shafts of the motor and pump. The system can determine rotational speed, torque, current and voltage with respect of the load.


Author(s):  
Isaiah Adebayo ◽  
David Aborisade ◽  
Olugbemi Adetayo

Optimal performance of the Brushless Direct Current (BLDC) motor is to be realized using an efficient Proportional Integral Derivative (PID) controller. However, conventional tuning technique fails to perform satisfactorily under parameter variations, nonlinear conditions and time delay. Also using conventional technique to tune the parameters gain of the PID controller is a difficult task. To overcome these difficulties, modern heuristic optimization technique are required to optimally tune the Proportional, Integral, Derivative of the controller for optimal speed control of three phase BLDC motor. Thus, genetic algorithm (GA) based PID controller was used to achieve a high dynamic control performance. The Brushless DC Motor mathematical equation which describes the voltage and corresponding rotational angular speed and torque of the brushless DC motor was employed using electrical DC Machines theorem. The Genetic algorithm was further analyzed by adopting the three common performance indices i.e. Integral Time Absolute Error (ITAE), Integral Square Error (ISE) and Integral Absolute Error (IAE) in order to capture and compare the most suitable BLDC Motor speed and torque control characteristics. All simulations were done using MATLAB (R2018a). The simulation result showed that the system with GA-PID controller had the better system response when compared with the existing technique of ZN-PID controller.


Author(s):  
J. Karthikeyan ◽  
R. Dhanasekaran

The brushless DC motor (BLDC motor) drive is used in several high performance applications ranging from servos to traction drives, due to several distinct advantages such as high power density, high efficiency, fast response and maintenance free. BLDC motor is usually driven by hard switching PWM inverter, which normally has higher switching losses. In recent years, these are several soft switching inverters presented. But there are many disadvantages such as high device voltage stress and large DC link voltage ripple and so on. This paper presents a transformer based resonant dc link inverter for brushless dc motor. The modulation strategies can be classified into two kinds according to the turn-off sequence of the two switches of the pair of switches. Here, dc link voltage notches during chopping switches commutation for all switches working in zero voltage switching condition. The operating principle of soft switching and control scheme are presented. The proposed scheme is verified with the simulation and experimental results.


Author(s):  
Chico Hermanu Brillianto Apribowo ◽  
Musyaffa’ Ahmad ◽  
Hari Maghfiroh

<p class="Abstract">Brushless DC motor (BLDC) is one type of electric motor that is widely used, especially in automotive systems. This motor is widely used as a driving force in electric vehicles. BLDC motor is chosen because it has the characteristics of high efficiency, reliability, and a wide speed range. Besides, BLDC motors require less maintenance and can operate quieter than DC motors. Even though it has many advantages, in its application the use of BLDC motors in electric vehicles is often less than optimal. The use of a conventional control system proportional integral derivative (PID) still has many weaknesses, especially in response to changes in load and track conditions. In this study, a control system was designed to regulate the speed of the BLDC motor, using a combination of Fuzzy and PID methods. Based on the results of the tests that have been done, the Fuzzy-PID control can provide better and more stable performance than using the conventional PI control.</p>


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2504
Author(s):  
Vadim Carev ◽  
Jan Roháč ◽  
Martin Šipoš ◽  
Michal Schmirler

This paper describes the concept of a multilayer brushless DC motor which is suitable for use on unmanned aerial vehicles (UAVs) and capable of carrying a heavy payload. The paper deals with a unique multilayer structure, using three standard stators placed in parallel with a single rotor body, to increase the torque even under low-speed conditions. In this solution, nine inner windings can use different star/delta interconnections to optimize the performance of the BLDC motor on demand. The proposed multilayer BLDC motor solution utilizes the main advantages of BLDC motors, ensuring highly reliable operation, and thus enabling a BLDC motor to be applied to UAVs. This paper gives an overview of the design, assumes an extension with an electronic inner winding switching capability, and provides practical details about realization, testing, and experimental verification. Practical measurements and obtained data are utilized to confirm the approach.


Sign in / Sign up

Export Citation Format

Share Document