Development of an amperometric sensor based on the synergistic action between alginic acid and nPEDOT on a gold nanoparticle-modified screen–printed carbon electrode for As(III) determination in natural water samples

2021 ◽  
pp. ArticleID:211235
Author(s):  
Claudia Núñez ◽  
Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 279 ◽  
Author(s):  
Samuel Frutos-Puerto ◽  
Conrado Miró ◽  
Eduardo Pinilla-Gil

In this work, we explore the protection with Nafion of commercial sputtered-bismuth screen-printed electrodes (BiSPSPEs), to improve its ability for on-site determination of Cd(II) and Pb(II) ions in ambient water samples. The modified screen-printed platform was coupled with a miniaturized cell, in combination with a battery-operated stirring system and a portable potentiostat operated by a laptop for decentralized electrochemical measurements using Square-Wave Anodic Stripping Voltammetry (SWASV). We also describe a detailed electrode surface characterization by microscopy and surface analysis techniques, before and after the modification with Nafion, to get insight about modification effect on signal size and stability. Optimization of the chemical composition of the medium including the optimization of pH, and instrumental parameters, resulted in a method with detection limits in the low ng/mL range (3.62 and 3.83 ng·mL−1 for Cd and Pb respectively). Our results show an improvement of the sensitivity and stability for Nafion-protected BiSPSPEs in pH = 4.4 medium, and similar or lower detection limits than comparable methods on commercial BiSPSPEs. The values obtained for Pb(II) and Cd(II) in natural water samples agreed well with those obtained by the much more costly Inductively Coupled Plasma Mass Spectrometry, ICP-MS, technique as a reference method (recoveries from 75% to 111%).


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wong Pooi See ◽  
Sheila Nathan ◽  
Lee Yook Heng

A disposable copper (II) ion biosensor based on self-assembly of L-cysteine on gold nanoparticle-modified screen-printed carbon electrode was fabricated. The electrode was modified by attaching gold nanoparticles onto the surface of screen-printed carbon electrode through seed mediated growth method followed by self-assembly of L-cysteine. As demonstrated by differential pulse voltammetry, the sensor exhibited high sensitivity to copper (II) ion down to ppb (parts per billion) levels. Optimization of various experimental parameters such as pH, buffer concentration, and preconcentration time, which influenced the performance of the biosensor, was investigated. The sensor demonstrated a wide linear response range from 10 to 0.005 ppm(r=0.9870), with a lower detection limit of 8 ppb using 10 min of preconcentration time. The sensor based on screen-printed electrode provides a cost-effective means of application of copper ion sensor for the detection of ppb level of copper ions in water.


Sign in / Sign up

Export Citation Format

Share Document