Thin Film Thickness Measurement by Surface Plasmon Resonance Using a Modified Otto’s Configuration Combined with Ellipsometry

2011 ◽  
Vol 5 (2) ◽  
pp. 236-240 ◽  
Author(s):  
Yasuhiro Mizutani ◽  
◽  
Tetsuo Iwata

We have developed a method of measuring thin film thickness by using two optical properties that are highsensitivity for a film thickness, such as surface plasmon resonance (SPR) and elliptical properties with SPR response. The SPR signal is high sensitivity, suitable for measuring the thickness of a sample with a thin layer. This phenomenon can be detected by measuring the absorbance on the sample surface. We focused on the Otto configuration, a famous method for the generation of a SPR signal, which consists of 4 layers such as a SiO2 substrate, air, dielectric material and a metal layer. It is useful for the measurement of thin film thickness because there is an air layer in the configuration. However, the configuration has the disadvantage: it is necessary to adjust the distance from sample surface to the SiO2 substrate on a nanometer order. To overcome the problem, we focused on the modified Otto’s configuration proposed by Bliokh et. al [Appl. Phys. Lett. 89, 021908 (2006)]. In the configuration, there is a plano-convex lens of SiO2 as the substrate. By using its curvature, there is no adjustment process and the SPR signal can be detected easily. The SPR signal has a polarization property that depends on the thin film thickness. By analyzing of polarization properties of the SPR signal by means of ellipsometry, thin film thickness can be measured with sub-nanometer accuracy which is higher than the SPR signals. In this paper, further results involving the measurement are presented and discussed.

2013 ◽  
Vol 1494 ◽  
pp. 233-238
Author(s):  
Ayushi Paliwal ◽  
Monika Tomar ◽  
Vinay Gupta

ABSTRACTThe effect of tungsten oxide (WO3) thin film thickness on the surface plasmon resonance (SPR) properties have been investigated. WO3 films of varying the thickness (36 nm, 60 nm, 80 nm, 100 nm, 150 nm and 200nm) have been deposited onto Au coated prism (Au/prism) by radio frequency (RF) magnetron sputtering technique. The SPR responses of bilayer films were fitted with the Fresnel’s equations in order to calculate the dielectric constant of WO3 thin film. The variation of complex dielectric constant and refractive index with the thickness of WO3 thin film was studied.


2021 ◽  
Vol 11 (7) ◽  
pp. 2963
Author(s):  
Nur Alia Sheh Omar ◽  
Yap Wing Fen ◽  
Irmawati Ramli ◽  
Umi Zulaikha Mohd Azmi ◽  
Hazwani Suhaila Hashim ◽  
...  

A novel vanadium–cellulose composite thin film-based on angular interrogation surface plasmon resonance (SPR) sensor for ppb-level detection of Ni(II) ion was developed. Experimental results show that the sensor has a linear response to the Ni(II) ion concentrations in the range of 2–50 ppb with a determination coefficient (R2) of 0.9910. This SPR sensor can attain a maximum sensitivity (0.068° ppb−1), binding affinity constant (1.819 × 106 M−1), detection accuracy (0.3034 degree−1), and signal-to-noise-ratio (0.0276) for Ni(II) ion detection. The optical properties of thin-film targeting Ni(II) ions in different concentrations were obtained by fitting the SPR reflectance curves using the WinSpall program. All in all, the proposed Au/MPA/V–CNCs–CTA thin-film-based surface plasmon resonance sensor exhibits better sensing performance than the previous film-based sensor and demonstrates a wide and promising technology candidate for environmental monitoring applications in the future.


Optik ◽  
2019 ◽  
Vol 178 ◽  
pp. 802-812 ◽  
Author(s):  
Nur Syahira Md Ramdzan ◽  
Yap Wing Fen ◽  
Nur Alia Sheh Omar ◽  
Nur Ain Asyiqin Anas ◽  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Hiromasa Shimizu ◽  
Takahiro Ogura ◽  
Takumi Maeda ◽  
Shogo Suzuki

We show here the design, fabrication, and characterization of a wedge-shaped Au thin film with an enhanced figure of merit (FOM). This is achieved by using a reflectivity change in an attenuated total reflection (ATR) setup by slightly modulating the wavenumber of the surface plasmon polariton by means of the varying thickness of the Au thin film. The wedge-shaped Au thin film is equivalent to multiple surface plasmon resonance (SPR) transducers integrated in a single chip and was fabricated by an electron-beam evaporation process with the position of the shutter controlled during the deposition. The FOM, defined as the difference between the maximum and minimum values of the normalized reflectivity change (ΔR/R) divided by the corresponding difference of the incident angles, was 8.0-times larger than that based on the reflectivity R. Also, we demonstrated that the wedge-shaped Au thin film was able to detect ethanol gas at a concentration of 0.2%, corresponding to a refractive index change of 2 × 10−5, without any surface functionalization. Since the sensing signal can be obtained with a single image from the wedge-shaped Au thin film without precise thickness control of the metal thickness, no other materials or modulation equipment is necessary, and the sensing chip can be employed in simple and highly sensitive systems.


Sign in / Sign up

Export Citation Format

Share Document