scholarly journals An algorithm for formation control of mobile robots

2013 ◽  
Vol 10 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Aleksandar Cosic ◽  
Marko Susic ◽  
Stevica Graovac ◽  
Dusko Katic

Solution of the formation guidance in structured static environments is presented in this paper. It is assumed that high level planner is available, which generates collision free trajectory for the leader robot. Leader robot is forced to track generated trajectory, while followers? trajectories are generated based on the trajectory realized by the real leader. Real environments contain large number of static obstacles, which can be arbitrarily positioned. Hence, formation switching becomes necessary in cases when followers can collide with obstacles. In order to ensure trajectory tracking, as well as object avoidance, control structure with several controllers of different roles (trajectory tracking, obstacle avoiding, vehicle avoiding and combined controller) has been adopted. Kinematic model of differentially driven two-wheeled mobile robot is assumed. Simulation results show the efficiency of the proposed approach.

One of the major problems in the field of mobile robots is the trajectory tracking problem. There are a big number of investigations for different control strategies that have been used to control the motion of the mobile robot when the nonlinear kinematic model of mobile robots was considered. The trajectory tracking control of autonomous wheeled mobile robot in a changing unstructured environment needs to take into account different types of uncertainties. Type-1 fuzzy logic sets present limitations in handling those uncertainties while type-2 fuzzy logic sets can manage these uncertainties to give a superior performance. This paper focuses on the design of interval type-2 fuzzy like proportional-integral-derivative (PID) controller for the kinematic model of mobile robot. The firefly optimization algorithm has been used to find the best values of controller’s parameters. The aim of this controller is trying to force the mobile robot tracking a pre-defined continuous path with minimum tracking error. The Matlab simulation results demonstrate the good performance and robustness of this controller. These were confirmed by the obtained values of the position tracking errors and a very smooth velocity, especially with regards to the presence of external disturbance or change in the initial position of mobile robot. Finally, in comparison with other proposed controllers, the results of nonlinear IT2FLC PID controller outperform the nonlinear PID neural controller in minimizing the MSE for all control variables and in the robustness measure.


Author(s):  
Hannes Wind ◽  
Oliver Sawodny ◽  
Thomas Br•aunl

This work investigates and compares various formation control approaches for mobile robots. A comprehensive literature review was conducted, with particular focus on the approaches' applicability to be implemented on real mobile robots with limited hard and software capabilities. A realistic model of mobile robots is introduced and its parameters are identi ed with measurements from actual mo-bile robots. Later on, the model is extended and used within simulation studies of the various investigated approaches. A collision avoidance controller based on a formation controller is proposed and simulations are carried out. Experiments on real mobile robots are conducted for two formation controllers and for the pro-posed collision avoidance controller. It is shown that if the requirements resulting from the simulation studies are satis ed, an implementation on the real robots is possible.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 335-349 ◽  
Author(s):  
Andrés Rosales ◽  
Gustavo Scaglia ◽  
Vicente Mut ◽  
Fernando di Sciascio

SUMMARYA novel approach for trajectory tracking of a mobile-robots formation by using linear algebra theory and numerical methods is presented in this paper. The formation controller design is based on the formation states concept and the dynamic model of a unicycle-like nonholonomic mobile robot. The proposed control law designed is decentralized and scalable. Simulations and experimental results confirm the feasibility and the effectiveness of the proposed controller and the advantages of using the dynamic model of the mobile robot. By using this new strategy, the formation of mobile robots is able to change its configuration (shape and size) and follow different trajectories in a precise way, minimizing the tracking and formation errors.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Caihong Zhang ◽  
Tairen Sun ◽  
Yongping Pan

This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle) of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN) finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.


2018 ◽  
Vol 26 (6) ◽  
pp. 2250-2258 ◽  
Author(s):  
Akshit Saradagi ◽  
Vijay Muralidharan ◽  
Vishaal Krishnan ◽  
Sandeep Menta ◽  
Arun D. Mahindrakar

2020 ◽  
Vol 69 ◽  
pp. 471-500
Author(s):  
Shih-Yun Lo ◽  
Shiqi Zhang ◽  
Peter Stone

Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.


2017 ◽  
Vol 260 ◽  
pp. 38-44
Author(s):  
Amit Ailon

This study presents controllers for trajectory tracking for the kinematic model of an Unmanned Ground Vehicle (UGV) subject to bounded inputs. The proposed controllers are based on smooth uniformly bounded functions that can easily be realized. Some results are demonstrated.


2019 ◽  
Vol 9 (5) ◽  
pp. 1034 ◽  
Author(s):  
Sendren Sheng-Dong Xu ◽  
Hsu-Chih Huang ◽  
Tai-Chun Chiu ◽  
Shao-Kang Lin

This paper presents a biologically-inspired learning and adaptation method for self-evolving control of networked mobile robots. A Kalman filter (KF) algorithm is employed to develop a self-learning RBFNN (Radial Basis Function Neural Network), called the KF-RBFNN. The structure of the KF-RBFNN is optimally initialized by means of a modified genetic algorithm (GA) in which a Lévy flight strategy is applied. By using the derived mathematical kinematic model of the mobile robots, the proposed GA-KF-RBFNN is utilized to design a self-evolving motion control law. The control parameters of the mobile robots are self-learned and adapted via the proposed GA-KF-RBFNN. This approach is extended to address the formation control problem of networked mobile robots by using a broadcast leader-follower control strategy. The proposed pragmatic approach circumvents the communication delay problem found in traditional networked mobile robot systems where consensus graph theory and directed topology are applied. The simulation results and numerical analysis are provided to demonstrate the merits and effectiveness of the developed GA-KF-RBFNN to achieve self-evolving formation control of networked mobile robots.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Khoshnam Shojaei ◽  
Alireza Mohammad Shahri ◽  
Ahmadreza Tarakameh ◽  
Behzad Tabibian

SUMMARYThis paper presents an adaptive trajectory tracking controller for a non-holonomic wheeled mobile robot (WMR) in the presence of parametric uncertainty in the kinematic and dynamic models of the WMR and actuator dynamics. The adaptive non-linear control law is designed based on input–output feedback linearization technique to get asymptotically exact cancellation for the uncertainty in the given system parameters. In order to evaluate the performance of the proposed controller, a non-adaptive controller is compared with the adaptive controller via computer simulation results. The results show satisfactory trajectory tracking performance by virtue of SPR-Lyapunov design approach. In order to verify the simulation results, a set of experiments have been carried out on a commercial mobile robot. The experimental results also show the effectiveness of the proposed controller.


Robotica ◽  
2002 ◽  
Vol 20 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Vicente Mut ◽  
José Postigo ◽  
Emanuel Slawiñski ◽  
Benjamin Kuchen

A control structure for the bilateral teleoperation of mobile robots, with tactile feedback and visual information of the interaction force is proposed in this paper. Also an impedance controller is implemented in the mobile robot structure that guarantees the linear velocity be within a desired fixed range without saturation in the actuators. To illustrate the performance of the proposed control structure, experiments on a Pioneer 2 mobile robot teleoperated with a commercial joystick with force feedback are shown.


Sign in / Sign up

Export Citation Format

Share Document