Position Control of Direct-Drive Robot Manipulators with PMAC Motors Using Enhanced Fuzzy PD Control

Author(s):  
Dong Sun ◽  
◽  
Y. X. Su ◽  
James K. Mills ◽  

A position control approach for direct-drive robot manipulators with permanent magnet AC (PMAC) motors is proposed. The conventional vector control architecture has been simplified by specifying the motor stator phase so that the rotating d-axis current is zero. The position control is designed to be an enhanced fuzzy PD controller, by incorporating two nonlinear tracking differentiators into a conventional fuzzy PD controller. The proposed control methodology is easy to implement, and exhibits better control performance than conventional control methods. Experiments conducted on a single-link manipulator directly driven by a PMAC motor demonstrate the validity of the proposed approach.

1990 ◽  
Vol 112 (4) ◽  
pp. 653-660 ◽  
Author(s):  
H. Kazerooni ◽  
K. G. Bouklas ◽  
J. Guo

This work presents a control methodology for compliant motion in redundant robot manipulators. This control approach takes advantage of the redundancy in the robot’s degrees of freedom: while a maximum six degrees of freedom of the robot control the robot’s endpoint position, the remaining degrees of freedom impose an appropriate force on the environment. To verify the applicability of this control method, an active end-effector is mounted on an industrial robot to generate redundancy in the degrees of freedom. A set of experiments are described to demonstrate the use of this control method in constrained maneuvers. The stability of the robot and the environment is analyzed.


1996 ◽  
Vol 8 (3) ◽  
pp. 243-251
Author(s):  
Satoshi Komada ◽  
◽  
Muneaki Ishida ◽  
Kouhei Ohnishi ◽  
Takamasa Hori ◽  
...  

This paper proposes a new robust hybrid position/force control of robot manipulators. The proposed method controls the second derivatives of control variables, such as position and force in a task coordinate system, in order to realize robust and high response control. To this end, the disturbances are estimated by a position-based disturbance observer and a force-based distrubance observer in the task coordinate system, and are compensated by feeding back the estimated distrubances. The proposed method requires less computational effort and is robust against the disturbance and parameter variations. The position-based distrubance observer has been proposed to linearize robot manipulators and has realized robust position control. However, when force control is performed, the force response is influenced by not only the nonlinearity of robot manipulators but also the charactersitics of the environment on which the force is imposed. Therefore, the force-based disturbance observer is developed to realize robust force control. A controller robust against the disturbance and parameter variations is realized by using the position-based disturbance observer and the force-based disturbance observer on performing the position control and the force control respectively. The effectiveness of the proposed method is shown by experiments by using a direct drive robot.


Author(s):  
Ali Alouache ◽  
Qinghe Wu

Purpose The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive wheeled mobile robot (WMR) of the type Quanser Qbot. Design/methodology/approach Fuzzy robot control approach is used for developing a robust fuzzy PD controller for trajectory tracking of a nonholonomic differential drive WMR. The linear/angular velocity of the differential drive mobile robot are formulated such that the tracking errors between the robot’s trajectory and the reference path converge asymptotically to zero. Here, a new controller zero-order Takagy–Sugeno trajectory tracking (ZTS-TT) controller is deduced for robot’s speed regulation based on the fuzzy PD controller. The WMR used for the experimental implementation is Quanser Qbot which has two differential drive wheels; therefore, the right/left wheel velocity of the differential wheels of the robot are worked out using inverse kinematics model. The controller is implemented using MATLAB Simulink with QUARC framework, downloaded and compiled into executable (.exe) on the robot based on the WIFI TCP/IP connection. Findings Compared to other fuzzy proportional-integral-derivative (PID) controllers, the proposed fuzzy PD controller was found to be robust, stable and consuming less resources on the robot. The comparative results of the proposed ZTS-TT controller and the conventional PD controller demonstrated clearly that the proposed ZTS-TT controller provides better tracking performances, flexibility, robustness and stability for the WMR. Practical implications The proposed fuzzy PD controller can be improved using hybrid techniques. The proposed approach can be developed for obstacle detection and collision avoidance in combination with trajectory tracking for use in environments with obstacles. Originality/value A robust fuzzy logic PD is developed and its performances are compared to the existing fuzzy PID controller. A ZTS-TT controller is deduced for trajectory tracking of an autonomous nonholonomic differential drive mobile robot (i.e. Quanser Qbot).


2014 ◽  
Vol 14 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Jianfeng Huang ◽  
Chengying Yang ◽  
Jun Ye

Abstract A Nonlinear Proportional-Derivative (NPD) controller with gravity compensation is proposed and applied to robot manipulators in this paper. The proportional and derivative gains are changed by the nonlinear function of errors in the NPD controller. The closed-loop system, composed of nonlinear robot dynamics and NPD controllers, is globally asymptotically stable in position control of robot manipulators. The comparison of the simulation experiments in the position control (the step response) of a robot manipulator with two degrees of freedom is also presented to illustrate that the NPD controller is superior to the conventional PD controller in a position control system. The experimental results show that the NPD controller can obtain a faster response velocity and higher position accuracy than the conventional PD controller in the position control of robot manipulators because the proportional and derivative gains of the NPD controller can be changed by the nonlinear function of errors. The NPD controller provides a novel approach for robot control systems.


2014 ◽  
Vol 551 ◽  
pp. 541-547
Author(s):  
He Song Liu ◽  
Yong Ling Fu ◽  
Juan Chen ◽  
Hui Chen

A novel active disturbance rejection control (ADRC) strategy is presented to improve position control performance of airborne direct drive electro-mechanical actuator (EMA). To begin with, kinematics model of the direct drive EMA is deduced for simulation benefits. Then, an ADRC controller is designed to implement the position control. Finally, simulation work is put forward to verify the steady-state precision, dynamic performance and load disturbance rejection ability, accounting for over-running load. The results verify that the ADRC-based EMA servo system is fast, precise, of no overshoot and strongly robust to load disturbance.


2020 ◽  
pp. 107754632097116
Author(s):  
Illés Vörös ◽  
Balázs Várszegi ◽  
Dénes Takács

The lateral position control of the vehicle is analyzed in the presence of time delay. To compensate the negative effects of dead time, the predictor control approach called finite spectrum assignment is applied. This controller includes a linear model of the plant and uses the solution of this model over the delay interval to predict the current system states. The focus of the article is whether to include tire dynamics in the predictive model of the controller. Although the more detailed model should improve control performance, the additional parameters (e.g., tire stiffnesses and yaw moment of inertia) are difficult to determine accurately. The effects of parameter mismatches are analyzed in detail, and recommendations are given to ensure safe control of the vehicle. It is shown that the inclusion of tire dynamics in the predictive model vastly improves control performance even in the presence of large parameter errors, but in certain cases, the inaccuracies may lead to instability.


2006 ◽  
Vol 129 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Wen-Hong Zhu ◽  
Erick Dupuis ◽  
Michel Doyon

Aimed at achieving ultrahigh control performance for high-end applications of harmonic drives, an adaptive control algorithm using additional sensing, namely, the joint and motor positions and the joint torque, and their practically available time derivatives, is proposed. The proposed adaptive controller compensates the large friction associated with harmonic drives, while incorporating the dynamics of flexspline. The L2∕L∞ stability and the L2 gain-induced H∞ stability are guaranteed in both joint torque and joint position control modes. Conditions for achieving asymptotic stability are also given. The proposed joint controller can be efficiently incorporated into any robot motion control system based on either its torque control interface or the virtual decomposition control approach. Experimental results demonstrated in both the time and frequency domains confirm the superior control performance achieved not only in individual joint motion, but also in coordinated motion of an entire robot manipulator.


2004 ◽  
Vol 151 (6) ◽  
pp. 675-682 ◽  
Author(s):  
Y.X. Su ◽  
B.Y. Duan ◽  
C.H. Zheng ◽  
D. Sun

2003 ◽  
Vol 22 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Yan Sheng ◽  
Chao Wang ◽  
Ying Pan ◽  
Xinhua Zhang

This paper presents a new active structural control design methodology comparing the conventional linear-quadratic-Gaussian synthesis with a loop-transfer-recovery (LQG/LTR) control approach for structures subjected to ground excitations. It results in an open-loop stable controller. Also the closed-loop stability can be guaranteed. More importantly, the value of the controller's gain required for a given degree of LTR is orders of magnitude less than what is required in the conventional LQG/LTR approach. Additionally, for the same value of gain, the proposed controller achieves a much better degree of recovery than the LQG/LTR-based controller. Once this controller is obtained, the problems of control force saturation are either eliminated or at least dampened, and the controller band-width is reduced and consequently the control signal to noise ratio at the input point of the dynamic system is increased. Finally, numerical examples illustrate the above advantages.


Sign in / Sign up

Export Citation Format

Share Document