scholarly journals Entity Alignment Method of Points of Interest for Internet Location-Based Services

Author(s):  
Chaoran Zhou ◽  
Jianping Zhao ◽  
Xin Zhang ◽  
Chenghao Ren ◽  
◽  
...  

In Internet applications, the description for the same point of interest (POI) entity for different location-based services (LBSs) is not completely identical. The POI entity information in a single LBS data source contains incomplete data and exhibits insufficient objectivity. Aligning and consolidating POI entities from various LBSs can provide users with more comprehensive, objective, and authoritative POI information. We herein propose a multi-attribute measurement-based entity alignment method for Internet LBSs to achieve POI entity alignment and data consolidation. This method is based on multi-attribute information (geographical information, text coincidence information, semantic information) of POI entities and is combined with different measurement methods to calculate the similarity of candidate entity pairs. Considering the demand for computational efficiency, the particle swarm optimization algorithm is used to train the model and optimize the weights of multi-attribute measurements. A consolidation strategy is designed for the LBS text data and user rating data from different sources to obtain more comprehensive and objective information. The experimental results show that, compared with other baseline models, the POI alignment method based on multi-attribute measurement performed the best. Using this method, the information of POI entities in multisource LBS can be integrated to serve netizens.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Shudong Liu

The rapid growth of location-based services (LBSs) has greatly enriched people’s urban lives and attracted millions of users in recent years. Location-based social networks (LBSNs) allow users to check-in at a physical location and share daily tips on points of interest (POIs) with their friends anytime and anywhere. Such a check-in behavior can make daily real-life experiences spread quickly through the Internet. Moreover, such check-in data in LBSNs can be fully exploited to understand the basic laws of humans’ daily movement and mobility. This paper focuses on reviewing the taxonomy of user modeling for POI recommendations through the data analysis of LBSNs. First, we briefly introduce the structure and data characteristics of LBSNs, and then we present a formalization of user modeling for POI recommendations in LBSNs. Depending on which type of LBSNs data was fully utilized in user modeling approaches for POI recommendations, we divide user modeling algorithms into four categories: pure check-in data-based user modeling, geographical information-based user modeling, spatiotemporal information-based user modeling, and geosocial information-based user modeling. Finally, summarizing the existing works, we point out the future challenges and new directions in five possible aspects.


Author(s):  
Xiaoling Luo ◽  
Adrian Cottam ◽  
Yao-Jan Wu ◽  
Yangsheng Jiang

Trip purpose information plays a significant role in transportation systems. Existing trip purpose information is traditionally collected through human observation. This manual process requires many personnel and a large amount of resources. Because of this high cost, automated trip purpose estimation is more attractive from a data-driven perspective, as it could improve the efficiency of processes and save time. Therefore, a hybrid-data approach using taxi operations data and point-of-interest (POI) data to estimate trip purposes was developed in this research. POI data, an emerging data source, was incorporated because it provides a wealth of additional information for trip purpose estimation. POI data, an open dataset, has the added benefit of being readily accessible from online platforms. Several techniques were developed and compared to incorporate this POI data into the hybrid-data approach to achieve a high level of accuracy. To evaluate the performance of the approach, data from Chengdu, China, were used. The results show that the incorporation of POI information increases the average accuracy of trip purpose estimation by 28% compared with trip purpose estimation not using the POI data. These results indicate that the additional trip attributes provided by POI data can increase the accuracy of trip purpose estimation.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tian J. Ma ◽  
Rudy J. Garcia ◽  
Forest Danford ◽  
Laura Patrizi ◽  
Jennifer Galasso ◽  
...  

AbstractThe amount of data produced by sensors, social and digital media, and Internet of Things (IoTs) are rapidly increasing each day. Decision makers often need to sift through a sea of Big Data to utilize information from a variety of sources in order to determine a course of action. This can be a very difficult and time-consuming task. For each data source encountered, the information can be redundant, conflicting, and/or incomplete. For near-real-time application, there is insufficient time for a human to interpret all the information from different sources. In this project, we have developed a near-real-time, data-agnostic, software architecture that is capable of using several disparate sources to autonomously generate Actionable Intelligence with a human in the loop. We demonstrated our solution through a traffic prediction exemplar problem.


Author(s):  
Mohamad Hasan

This paper presents a model to collect, save, geocode, and analyze social media data. The model is used to collect and process the social media data concerned with the ISIS terrorist group (the Islamic State in Iraq and Syria), and to map the areas in Syria most affected by ISIS accordingly to the social media data. Mapping process is assumed automated compilation of a density map for the geocoded tweets. Data mined from social media (e.g., Twitter and Facebook) is recognized as dynamic and easily accessible resources that can be used as a data source in spatial analysis and geographical information system. Social media data can be represented as a topic data and geocoding data basing on the text of the mined from social media and processed using Natural Language Processing (NLP) methods. NLP is a subdomain of artificial intelligence concerned with the programming computers to analyze natural human language and texts. NLP allows identifying words used as an initial data by developed geocoding algorithm. In this study, identifying the needed words using NLP was done using two corpora. First corpus contained the names of populated places in Syria. The second corpus was composed in result of statistical analysis of the number of tweets and picking the words that have a location meaning (i.e., schools, temples, etc.). After identifying the words, the algorithm used Google Maps geocoding API in order to obtain the coordinates for posts.


Author(s):  
Farhad Bin Siddique ◽  
Dario Bertero ◽  
Pascale Fung

We propose a multilingual model to recognize Big Five Personality traits from text data in four different languages: English, Spanish, Dutch and Italian. Our analysis shows that words having a similar semantic meaning in different languages do not necessarily correspond to the same personality traits. Therefore, we propose a personality alignment method, GlobalTrait, which has a mapping for each trait from the source language to the target language (English), such that words that correlate positively to each trait are close together in the multilingual vector space. Using these aligned embeddings for training, we can transfer personality related training features from high-resource languages such as English to other low-resource languages, and get better multilingual results, when compared to using simple monolingual and unaligned multilingual embeddings. We achieve an average F-score increase (across all three languages except English) from 65 to 73.4 (+8.4), when comparing our monolingual model to multilingual using CNN with personality aligned embeddings. We also show relatively good performance in the regression tasks, and better classification results when evaluating our model on a separate Chinese dataset.


2018 ◽  
Vol 44 (6) ◽  
pp. 802-817 ◽  
Author(s):  
Carlos Rios ◽  
Silvia Schiaffino ◽  
Daniela Godoy

Location-based recommender systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of like-minded people, so-called neighbours, for prediction. Thus, an adequate selection of such neighbours becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbours in the context of a collaborative filtering–based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighbourhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from location-based social networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbours based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area and to recommender system developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.


2020 ◽  
Vol 9 (7) ◽  
pp. 459
Author(s):  
Paweł Cichosz

Geographical information systems have found successful applications to prediction and decision-making in several areas of vital importance to contemporary society. This article demonstrates how they can be combined with machine learning algorithms to create crime prediction models for urban areas. Selected point of interest (POI) layers from OpenStreetMap are used to derive attributes describing micro-areas, which are assigned crime risk classes based on police crime records. POI attributes then serve as input attributes for learning crime risk prediction models with classification learning algorithms. The experimental results obtained for four UK urban areas suggest that POI attributes have high predictive utility. Classification models using these attributes, without any form of location identification, exhibit good predictive performance when applied to new, previously unseen micro-areas. This makes them capable of crime risk prediction for newly developed or dynamically changing neighborhoods. The high dimensionality of the model input space can be considerably reduced without predictive performance loss by attribute selection or principal component analysis. Models trained on data from one area achieve a good level of prediction quality when applied to another area, which makes it possible to transfer or combine crime risk prediction models across different urban areas.


2017 ◽  
Vol 12 (2) ◽  
pp. 329-334
Author(s):  
Shosuke Sato ◽  
◽  
Toru Okamoto ◽  
Shunichi Koshimura ◽  

This study aims to compress web news, delivered as a big-data source after disasters. In this paper, article clustering, which is a combination of conventional means and an algorithm that selects the representative articles of each cluster, is designed and adopted. Experiments are conducted by evaluators. The proposed algorithm is in accord with the evaluators for 50s% of the clustering and for about 30s% to 40s% of the representative-article selection.


Sign in / Sign up

Export Citation Format

Share Document