Special Issue on Multi-disciplinary Hazard Reduction from Earthquakes and Volcanoes in Indonesia

2012 ◽  
Vol 7 (1) ◽  
pp. 3-3 ◽  
Author(s):  
Kenji Satake ◽  
Yujiro Ogawa

Natural disasters and their mitigation are global issues, especially in Asian countries, which have suffered from such geohazards as earthquakes, tsunamis, and volcanic eruptions and such hydrometeorological hazards as typhoons, cyclones, storm surges, and floods. Research on natural hazards and disasters is multidisciplinary. Scientists from a wide variety of disciplines study hazards, their causes, their mechanisms, and prediction. Engineers study infrastructures and measures to reduce vulnerability. Social and humanitarian scientists study cultural and societal aspects of disasters. Educators study effective ways to raise people’s awareness and action. In addition to such research activities, practitioners work to implement the results of scientific research into practical policymaking. This special issue of JDR contains 12 papers on multidisciplinary studies concerning geohazards in Indonesia taken from a Science and Technology Research Partnership for Sustainable Development (SATREPS) project supported by the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency (JICA). SATREPS projects focus on both the scientific aspect, namely, acquiring new knowledge, and the Official Development Aids (ODA) aspect, namely, implementing such knowledge in societal applications. Following the first review article, which is a project overview, the next four papers report findings on natural hazards – the slip rate on the Lembang fault in Java, tsunami simulation for Java’s Palabuhanratu, the Sinabung volcano eruption in Sumatra, and methods of predicting and evaluating eruptions. One paper reports engineering studies on tsunami disaster mitigation in Padang city and two social science papers present hazards in the contexts of communities and human mobility. Two papers on disaster education cover disaster education development since the 2004 Indian Ocean tsunami and the use of tsunami simulation in disaster education. The last research paper and review article deal with policymaking related to the 2010 Mentawai and 2011 Japan tsunamis, respectively. All of these papers, including the review articles, have been peer-reviewed by two nonproject reviewers. We thank the authors for their timely contributions and revisions, and the reviewers for their invaluable and wide-ranging comments.

2021 ◽  
Vol 16 (4) ◽  
pp. 483-484
Author(s):  
Akihiko Wakai ◽  
Go Sato ◽  
The Viet Tran ◽  
Jessada Karnjana ◽  
Jiro Komori

This special issue summarizes some of the findings of the first half of our international joint research between Japan, Thailand, and Vietnam. This collaborative research is based on the framework of the e-ASIA Joint Research Program (e-ASIA JRP) and lasts for three years. Rainfall-induced landslides are a common disaster in many Asian countries. Our goal is to develop a practical method for landslide susceptibility mapping so that there are fewer landslide disasters in the future. The e-ASIA JRP is an international joint initiative of public funding organizations in the East Asia Summit member countries. Based on the co-funding mechanism, support for the research teams is received from the funding organizations in their respective countries. Since 2019, the Japanese, Thai, and Vietnamese teams have been supported by the Japan Science and Technology Agency (JST), the National Science and Technology Development Agency of Thailand (NSTDA), and the Ministry of Science and Technology of Vietnam (MOST), respectively. In the first half of our project, we completed the basic steps for developing the system. In this special issue, we are proud to present some of our achievements, including studies on slope failure analysis, landslide prevention works, meteorological observations, landslide monitoring, statistical or wide-area risk evaluations, mathematical models, and flash flood control. In addition to the above, we also present other valuable research achievements that related members have provided to help ensure the achievement of our goals. In total, 20 papers are published here. We believe that our comprehensive research activities will dramatically increase future landslide disaster mitigation, especially in monsoon Asia, and will strongly augment the roadmap for achieving the global Sustainable Development Goals (SDGs) as a common desire of humanity.


2013 ◽  
Vol 8 (2) ◽  
pp. 223-223
Author(s):  
Fumio Yamazaki ◽  
Carlos Zavala

Natural disasters are major threats worldwide, with earthquakes and tsunamis presenting major obstacles to sustainable development, especially in Asia-Pacific countries. Natural hazards must be understood and social resilience improved to reduce the risks of disaster. Because earthquakes and tsunamis are rare but devastating events, data must be collected on a global scale, making international collaboration is inevitable for reducing loss due to these events. A new international research program called the Science and Technology Research Partnership for Sustainable Development (SATREPS) started in 2008 jointly sponsored by the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency (JICA). Our proposal, entitled Enhancement of Earthquake and Tsunami Disaster Mitigation Technology in Peru, was designated as one of the projects in the field of natural disaster prevention in April 2009. Since this project officially started in March 2010, the research program has been promoted by five groups – seismic motion and geotechnical, tsunami, buildings, spatial information database and damage assessment, and disaster mitigation planning – through the strong collaboration of Peruvian and Japanese researchers and stakeholders. Midway through the project, we decided to publish our research results in the form of English technical papers so that a wide and global range of researchers and practitioners could take advantage of our findings. This special issue of the Journal of Disaster Research contains 15 articles – an overview of the project and its progress and 14 peer-reviewed papers covering aspects ranging from earthquake and tsunami hazards to risk reduction. We extend our sincere thanks to all of the contributors and reviewers involved with these articles. We would further deeply appreciate feedback from readers on these papers to prepare for a second special JDR volume on this project within the next two years.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Andreas Auer

AbstractField studies related to natural hazards are an integral part of any disaster mitigation effort, because geological samples and field records must initially be obtained from the context in which they occur. A sound fieldwork and careful observation and documentation of field relations is crucial for meaningful subsequent laboratory work, further data analysis and modelling. Teaching the necessary practical skills that enable students to recognize natural disaster events in the geological records and to understand circumstances under which they occur is not a trivial task. Some barriers to fieldwork usually exist, especially when the teaching subject focusses on natural disasters. Beside cost and logistics it is often the lack of suitable sites, that serve as instructive examples, displaying the deposits, structures and preserved evidence of natural hazards in the geological record. To students of volcanology, southwest Japan offers an almost unparalleled variety of interesting volcanic successions, including a broad range of different volcanic landforms and deposits that illustrate the various hazards associated with volcanic eruptions. This review will provide a brief overview of the geology of southwest Japan with special emphasis on the igneous and volcanic evolution. It will give participants of the field school a minimum of required background and anybody beyond a quick introduction into one of the most diverse and interesting volcanic field areas in the world.


2008 ◽  
Vol 3 (4) ◽  
pp. 251-251 ◽  
Author(s):  
Toshitsutgu Fujii ◽  
◽  
Kazuhiro Ishihara

The volcanic disasters are quite variable depending on the nature of the volcanic eruptions, the degrees of land-use surrounding the volcanic areas and preparedness against the eruptions. In order to mitigate the volcanic disasters, therefore, multidisciplinary approach is required. The International Volcanic Conference, ``Cities on Volcanoes 5," held in Shimabara Japan on the November 19-23, 2007 encouraged a wide range of people who are engaged in the volcanic disaster mitigation to gather to discuss topics related to volcanic eruptions and their hazards. The aim of this conference was to evaluate and improve mitigation measures, emergency management, and all required to successfully confront volcanic crises in densely populated area and to recover from any devastation. As the main topics discussed during the conference is quite adequate for the aim of this journal, this special issue tried to include papers read at the conference as many as possible. For the mitigation of the volcanic disasters, several different approaches should be included. Volcano monitoring through observation is the basis for most eruption forecasts and other measures for volcanic disaster mitigation. Impacts on human health and sustainability in volcanic areas in the fields of air and water pollution are also important issues to be included in the management of volcanic hazards. The practical lessons learned through the case histories of actual events should be shared to prepare for and respond to volcano crises that may affect communities. Hiroaki Takahashi proposes a method to estimate the real-time eruption magnitude that might be utilized to judge the duration of eruption in the early stage of eruption. Yoshikazu Kikawada et al. summarize arsenic pollution of rivers originated from the Kusatsu volcanic region. Tsuneomi Kagiyama and Yuichi Morita discuss the strategy to understand the preparing process of caldera forming eruption as a first step to assess the risk of gigantic eruption. Hiroshi Ikeya describes the prevention works executed by the central and local governments during and after the Mt. Unzen 1990-1995 eruption. Harry J. R. Keys summarizes the aspects of risk assessment and mitigation for a dome-break lahar that was predicted in 1995 and actually occurred on 18 March 2007 at Ruapehu volcano. Yoichi Nakamura et al. describe the mitigation systems on volcanic disasters in Japan emphasizing the importance of preparing hazard maps. We know the topics covered by this special issue do not represent the wide-ranging aspect of the conference, but include some significant portion. We hope that this special issue will be utilized to share the lessons learned through the practical trial to mitigate the actual disasters during the volcanic crisis.


2012 ◽  
Vol 7 (5) ◽  
pp. 533-533
Author(s):  
Kuniyoshi Takeuchi ◽  
Ali Chavoshian ◽  
Shinji Egashira

The 5th International Conference on Flood Management (ICFM5) was held on September 27-29, 2011 in Tokyo under the umbrella title “Floods: from risk to opportunity” focused on flood management and disaster mitigation measures in its plenary, oral, and poster sessions. Out of over 250 presented papers, 120 manuscripts – far more than expected – were contributed for post-publication in the Journal of Flood Risk Management, the IAHS Red Book and the Journal of Disaster Research (JDR). Editorial staff members of the JDR, which was independent of ICFM5, attended the conference to survey research activities in related study fields and to announce JDR strategies to participants. The ICHARM scientific committee supervising ICFM5 post-publications is well acquainted with JDR, which is one of the reasons for agreeing on this special issue. The 13 manuscripts presented for consideration by JDR concern the following topics: – Flood forecasting – Basic tools for evaluating inundation flows – Flood management practices and policies – Flood plain management – Relations between human activities and floods These topics range from novel studies to public statements and have been reviewed as papers, reviews, and survey reports. This resulted in 9 papers recommended for the special issue – 4 topics for papers, 1 topic for review, and 4 topics for reports. We thank the authors for their contributions and revisions and the reviewers for their invaluable comments. We also thank the ICHARM committee members for introducing authors to special publications for JDR.


2019 ◽  
Vol 14 (9) ◽  
pp. 1139-1139
Author(s):  
Haruo Hayashi ◽  
Eiichi Fukuyama

The National Research Institute for Earth Science and Disaster Resilience (NIED) is working on three tasks: predicting disasters, preventing damage, and realizing speedy reconstruction and recovery efforts in the event of natural disasters such as earthquakes, tsunamis, volcanic eruptions, landslides, torrential rains, blizzards, and ice storms. In the last three years of the NIED’s fourth mid/long term plan period, which began in 2016, natural disasters have occurred every year, including earthquake disasters such as the 2016 Kumamoto earthquake (M7.3) and the 2018 Iburi, Hokkaido, earthquake (M7.1). Disasters of the rainfall include the heavy rainfall in the northern Kyushu (Fukuoka and Oita) in July 2017, the heavy rain event in southwestern Japan in July 2018, the rainfall in northern Kyushu (Saga) in August 2019, and the heavy rainfall in Kanto and Tohoku in October 2019. There were also other disasters: an avalanche accident on Nasudake in 2017 and a phreatic eruption of Kusatsu-Shiranesan in 2018. Due to the above-mentioned very frequent occurrence of such natural disasters on the Japanese islands, our institute has conducted several research projects to mitigate the damage from such disasters and to accelerate the recovery from them. As the third NIED special issue in the Journal of Disaster Research, several related research results were presented such as those on seismic disasters (Wakai et al., Nakazawa et al., and Ohsumi et al.), those on climatic disasters (Nakamura, and Ishizawa and Danjo), and those of their integrated researches for disaster risk reduction (Cui et al. and Nakajima et al.). Although the achievements detailed in these papers are the results of individual research, the NIED hopes that these results as a whole will be fully utilized to promote science and technology for disaster risk reduction and resilience. The NIED hopes that this special issue awakens the readers’ interest in new research and, of course, creates an opportunity for further collaborative works with us.


2017 ◽  
Vol 12 (5) ◽  
pp. 843-843
Author(s):  
Haruo Hayashi ◽  
Yuichiro Usuda

In April 2016, our institute, NIED, under its new English name the “National Research Institute for Earth Science and Disaster Resilience,” commenced its fourth mid-to-long term planning period, set to last seven years. We are constantly required to carry out comprehensive efforts, including observations, forecasts, experiments, assessments, and countermeasures related to a variety of natural disasters, including earthquakes, tsunamis, volcanic eruptions, landslides, heavy rains, blizzards, and ice storms. Since this is NIED’s first special issue for the Journal of Disaster Research (JDR), works were collected on a wide variety of topics from research divisions and centers as well as from ongoing projects in order to give an overview of the latest achievements of the institute. We are delighted to present 17 papers on five topics: seismic disasters, volcanic disasters, climatic disasters, landslide disasters, and the development of comprehensive Information Communications Technology (ICT) for disaster management. Even though the achievements detailed in these papers are certainly the results individual research, NIED hopes to maximize these achievements for the promotion of science and technology for disaster risk reduction and resilience as a whole. It is our hope that this special issue awakens the readers’ interest in a study, and, of course, creates an opportunity for further collaborative works with us.


2018 ◽  
Vol 13 (5) ◽  
pp. 831-831
Author(s):  
Haruo Hayashi ◽  
Toshikazu Tanada

The National Research Institute for Earth Science and Disaster Resilience (NIED) is working on three tasks: predicting disasters, preventing damage, and realizing speedy reconstruction and recovery efforts in the event of natural disasters such as earthquakes, tsunamis, volcanic eruptions, landslides, torrential rains, blizzards, and ice storms. In the last two years of the NIED’s fourth mid/long term plan period, which began in 2016, the 2016 Kumamoto earthquake (M6.5 and M7.3), the heavy rainfall in the Northern Kyushu District in July 2017, and the heavy rain event of July 2018 are listed as “named” disasters, named by Japan Meteorological Agency. In addition, there were other disasters: an avalanche accident on Nasudake in 2017, an earthquake (M6.1) with its epicenter in northern Osaka, an eruption of Kirishimayama (Shinmoedake and Ioyama) and a phreatic eruption of Kusatsu-Shiranesan in 2018. The results of research done on the above-mentioned disasters and the latest results of ongoing projects in each research division and center were compiled as the second NIED special issue of the Journal of Disaster Research (JDR). In this special issue, we are delighted to present ten papers on three topics: climatic disasters, seismic disasters, and integrated research on disaster risk reduction. In particular, this special issue contains three papers on the above-mentioned heavy rainfall in the Northern Kyushu District in July 2017 and two papers related to the Kumamoto earthquake. Although the achievements detailed in these papers are the results of individual research, the NIED hopes that these results as a whole will be fully utilized to promote science and technology for disaster risk reduction and resilience. The NIED hopes that this special issue awakens the readers’ interest in new research and, of course, creates an opportunity for further collaborative works with us.


2020 ◽  
Vol 15 (3) ◽  
pp. 241-241
Author(s):  
Kimiro Meguro ◽  
Yudai Honma

This special issue summarizes the main results of the latter half of a five-year project called SATREPS (Science and Technology Research Partnership for Sustainable Development) supported by Japan International Cooperation Agency (JICA) and Japan Science and Technology Agency (JST). The project title is “Development of a Comprehensive Disaster Resilience System and Collaboration Platform in Myanmar” and it is the first SATREPS project adopted in Myanmar. Yangon Technological University (YTU) is a major counterpart organization and both national and local governmental organizations are working together as strategic partners. In the first half of the project, a database was constructed, composed of important data for assessing urban safety and disaster risk, such as the ground properties, and distribution of buildings, people, and traffic. Using the database, city development model and evaluation models for flood and earthquake risks were developed. In the latter half of the project, combining these two evaluation models, a system was developed for discussing future damage differences due to different urban plans and countermeasures. Furthermore, regarding flood, near-real-time flood inundation simulation system was developed. Related to earthquake disaster, a support system was developed for implementation of efficient countermeasures for both pre- and post-disaster. For infrastructure maintenance, performance monitoring and maintenance methods were proposed. Finally, in order to continue research activities and promote a continuous utilization of project results, a consortium scheme in which industry, government, and academia can work together has been created. We hope that our SATREPS project activities can contribute to proper urban development and improvement of disaster management issues not only in Myanmar but also in other Asian countries.


2017 ◽  
Vol 7 (2) ◽  
pp. 4-21 ◽  
Author(s):  
Arianna Borrelli ◽  
Alexandra Grieser

As an introduction to the case studies collected in the current special issue, this review article provides a brief, and by no means exhaustive, overview of research that proves to be relevant to the development of a concept of an aesthetics of knowledge in the academic study of religion and in science and technology studies. Finally, it briefly discusses recent work explicitly addressing the aesthetic entangle-ment of science and religion.


Sign in / Sign up

Export Citation Format

Share Document