Autonomous Formation of Transportation Order under Dynamical Environment

2000 ◽  
Vol 12 (4) ◽  
pp. 494-500 ◽  
Author(s):  
Toshimitsu Higashi ◽  
◽  
Kosuke Sekiyama ◽  
Toshio Fukuda ◽  
◽  
...  

This paper proposes a system, that realizes collective autonomous behavior such as an autonomous conveyance order formation in the AGV (Auto Guided Vehicle) transportation system. We attempt to deal with a large-scale distributed autonomous system in a dynamic environment feasibly. However, if we use a global evaluation function in order to control each agent, it is necessary to rewrite the global evaluation function of the system whenever the environment changes. If we use such a method, the system cannot be called a real distributed autonomous system. In this paper, we propose two ideas in order to realize dynamically reconfigurable formation in the dynamic environment, namely, learning based on the agent's own action and interaction with other agents by relative evaluation. By use of these ideas, it is shown that dynamically reconfigurable formation emerges as an autonomous conveyance order formation of AGV transportation in the dynamic environment.

2015 ◽  
Vol 15 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Jing Yu ◽  
Xianwen Bao ◽  
Yang Ding ◽  
Wei Zhang ◽  
Lingling Zhou

2021 ◽  
Author(s):  
Steluta topalov

<p>On 4 august 2020, one of the biggest non-nuclear explosions the world has seen in recent times took place in the Port of Beirut. Caused by the detonation of 2,750 tons of ammonium nitrate, inadequate stored in a warehouse in the port, the blast destroyed much of the city’s port and the surrounding infrastructure and severly  damaged the dense residential and commercial areas within 5 km of the explosion site. The impact of the explosion, which registered as a 3.3 magnitude earthquake according to the U.S. Geological Survey, was felt as far away as the island of Cyprus.</p><p>Athough the event was an technological hazard, the impact of the explosion is similar to a standardised natural disaster.</p><p>According to UNDP, a total of 200 000 residential units were affected with an estimated of 40 000 buildings damaged; 200 people lost their lives, around 6 000 individuals were injuried and around 300 000 people were displaced.</p><p>Such figure are comparable to other large-scale disasters such as Cyclone Vayu in India, which occured in June 2019 or the displacement caused by the Typhoon Vongfong, in the Philippines.</p><p>The frequent increase of the natural disasters  puts pressure on the critical infrastructure of the cities. The disruption of the transportation system,  which is vital for the sustainable daily operations, are having a big impact on the economical, enviromental and social dimension of a city system. Among the various types of transportation system, ports are a focal point because of its strategic role for the economic growth of cities,regions and  global network. In addition, they are nodal points for the social and economical activity of the inhabitants.</p><p>Although the ports have played a key role in the development of their host cities, they are also vulnerable to a broad range of risks and threats because of a particular spatial character: the location at the intersection of land and sea.  </p><p>The study of the Beirut’s Port explosion examines the impact of port failures on the host urban enviroment and the relationship between hazards, vulnerability and the impact. The vulnerability of the port to disasters results  to the vulnerability of its host city. A context –based understanding  of the impact of the disaster and the elements at risk is essential to identify appropriate risk management strategies. The location of the port within the urban environment, in densely populated area, as in case of Beirut are some of the characteristics of the port cities that can magnify the impact of disasters to which they are prone.  The study will focus on a collection of data that records the impact and allows visualisation of the complex patterns of the disaster risk reduction.</p><p>The impact caused by the Beirut’s port explosion reminds us about the important role of the ports in their host cities and how fundamental is to identify the port’s infrastructure  exposure to hazards and risks.  Lessons learned from such event may be useful to reduce disaster risks in the port cities.</p>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhi-guang Jiang ◽  
Xiao-tian Shi

The intelligent transportation system under the big data environment is the development direction of the future transportation system. It effectively integrates advanced information technology, data communication transmission technology, electronic sensing technology, control technology, and computer technology and applies them to the entire ground transportation management system to establish a real-time, accurate, and efficient comprehensive transportation management system that works on a large scale and in all directions. Intelligent video analysis is an important part of smart transportation. In order to improve the accuracy and time efficiency of video retrieval schemes and recognition schemes, this article firstly proposes a segmentation and key frame extraction method for video behavior recognition, using a multi-time scale dual-stream network to extract video features, improving the efficiency and efficiency of video behavior detection. On this basis, an improved algorithm for vehicle detection based on Faster R-CNN is proposed, and the Faster R-CNN network feature extraction layer is improved by using the principle of residual network, and a hole convolution is added to the network to filter out the redundant features of high-resolution video images to improve the problem of vehicle missed detection in the original algorithm. The experimental results show that the key frame extraction technology combined with the optimized Faster R-CNN algorithm model greatly improves the accuracy of detection and reduces the leakage. The detection rate is satisfactory.


2019 ◽  
Vol 484 (6) ◽  
pp. 672-677
Author(s):  
A. V. Vokhmintcev ◽  
A. V. Melnikov ◽  
K. V. Mironov ◽  
V. V. Burlutskiy

A closed-form solution is proposed for the problem of minimizing a functional consisting of two terms measuring mean-square distances for visually associated characteristic points on an image and meansquare distances for point clouds in terms of a point-to-plane metric. An accurate method for reconstructing three-dimensional dynamic environment is presented, and the properties of closed-form solutions are described. The proposed approach improves the accuracy and convergence of reconstruction methods for complex and large-scale scenes.


Author(s):  
Sajad Badalkhani ◽  
Ramazan Havangi ◽  
Mohsen Farshad

There is an extensive literature regarding multi-robot simultaneous localization and mapping (MRSLAM). In most part of the research, the environment is assumed to be static, while the dynamic parts of the environment degrade the estimation quality of SLAM algorithms and lead to inherently fragile systems. To enhance the performance and robustness of the SLAM in dynamic environments (SLAMIDE), a novel cooperative approach named parallel-map (p-map) SLAM is introduced in this paper. The objective of the proposed method is to deal with the dynamics of the environment, by detecting dynamic parts and preventing the inclusion of them in SLAM estimations. In this approach, each robot builds a limited map in its own vicinity, while the global map is built through a hybrid centralized MRSLAM. The restricted size of the local maps, bounds computational complexity and resources needed to handle a large scale dynamic environment. Using a probabilistic index, the proposed method differentiates between stationary and moving landmarks, based on their relative positions with other parts of the environment. Stationary landmarks are then used to refine a consistent map. The proposed method is evaluated with different levels of dynamism and for each level, the performance is measured in terms of accuracy, robustness, and hardware resources needed to be implemented. The method is also evaluated with a publicly available real-world data-set. Experimental validation along with simulations indicate that the proposed method is able to perform consistent SLAM in a dynamic environment, suggesting its feasibility for MRSLAM applications.


Author(s):  
Zahid Raza ◽  
Deo P. Vidyarthi

Computational Grid attributed with distributed load sharing has evolved as a platform to large scale problem solving. Grid is a collection of heterogeneous resources, offering services of varying natures, in which jobs are submitted to any of the participating nodes. Scheduling these jobs in such a complex and dynamic environment has many challenges. Reliability analysis of the grid gains paramount importance because grid involves a large number of resources which may fail anytime, making it unreliable. These failures result in wastage of both computational power and money on the scarce grid resources. It is normally desired that the job should be scheduled in an environment that ensures maximum reliability to the job execution. This work presents a reliability based scheduling model for the jobs on the computational grid. The model considers the failure rate of both the software and hardware grid constituents like application demanding execution, nodes executing the job, and the network links supporting data exchange between the nodes. Job allocation using the proposed scheme becomes trusted as it schedules the job based on a priori reliability computation.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1728
Author(s):  
Odilbek Urmonov ◽  
HyungWon Kim

To ensure the driving safety in vehicular network, it is necessary to construct a local dynamic map (LDM) for an extended range. Using the standard vehicular communication protocols, however, vehicles can construct the LDM for only one-hop range. Constructing large-scale LDM is highly challenging because vehicles randomly change their position. This paper proposes a dynamic map propagation (DMP) method, which builds a large aggregated LDM data using a multi-hop communication. To reduce the data overhead, we introduce an efficient clustering method based on a half-circle of the forwarder’s wireless range. The DMP elects one forwarder per cluster, which constructs LDM and forwards it to a neighbor cluster. The inter-cluster interference is minimized by allocating a different transmit window to each cluster. DMP copes with a dynamic environment by frequently re-electing the forwarders and their associated transmission windows. Simulation results reveal that DMP enhances the forwarders’ reception ratio by 20%, while extending LDM dissemination range by 29% over a previous work.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 427-429
Author(s):  
Y. P. ZHANG ◽  
Y. ZHAO

As the information technology grows up and its application penetrates into every area of this world, how to faster and more efficiently transport people and goods is becoming the new social demand, which indicates a new revolution on advanced transportation technology being brewed. High-temperature Superconductivity Maglev (HTSM) is one with the best development potential among most transportation technologies. It could be used in many advanced transportation fields, overcoming the key contradiction and shortcoming of the current transportation patterns such as train, automobile and airplane. On the other hand, HTSM will promote theoretical study and technology exploitation on superconductivity. HTSM's applications in a large scale will bring up profound effect on the forming and development of the superconductivity industry.


2011 ◽  
Vol 201-203 ◽  
pp. 2607-2610
Author(s):  
Wen Hui Zhao ◽  
She Liu

Large scale of the industrial waste is not timely disposed of due to economic rapid development. It is the main reason why environmental pollution problem is getting more and more serious and we should monitor the pollution of industrial waste. A MODIS (Moderate Resolution Imaging Spectroradiometer) senor is used for long-time and dynamic environment monitor because it has advantages of high time resolution and high spectral resolution characteristics etc. SPOT satellite data is used to analyze the ground vegetation for its higher ground resolution and rich product data bases. The influence of industrial waste on environment is analyzed and the result of research is verifyed with the information of local meteorological agent and observation data of site. This method can be used for monitoring wide-range industrial waste and have good performance of monitoring and early warning industrial waste sites which are in mountainous area.


Sign in / Sign up

Export Citation Format

Share Document