Development of ""Souryu I & II"" -Connected Crawler Vehicle for Inspection of Narrow and Winding Space

2003 ◽  
Vol 15 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Toshio Takayama ◽  
◽  
Shigeo Hirose

In large-scale disasters such as earthquakes, people who have been trapped inside collapsed houses or buildings must be located and rescued as soon as possible, because it becomes difficult to survive, as the time passes. The prototype of ""Connected Crawler Vehicle for Inspection of Narrow and Winding Space"", named ""Souryu"" has been developed for the purpose of searching for such victims. In order to stand practical use, the necessity of easy control and toughness are the basic concepts of this vehicle, and based on these principles, we determined the actual vehicle mechanical characteristics. In this paper, the mechanical design and performance of ""Souryu I"", and the way of improvement for ""Souryu II"" will be discussed and the effectiveness will be confirmed by some basic experiments and field tests.

2007 ◽  
Vol 08 (01) ◽  
pp. 1-28
Author(s):  
KEVIN F. CHEN ◽  
EDWIN H.-M. SHA

We show that universal routing can be achieved with low overhead in distributed networks. The validity of our results rests on a new network called the fat-stack. We show that from a routing perspective the fat-stack is efficient and is suitable for use as a baseline distributed network and as a crucial benchmark architecture for evaluating the performance of specific distributed networks. We show that the fat-stack is efficient by proving it is universal. A requirement for the fat-stack to be universal is that link capacities double up the levels of the network. We use methods developed in the areas of VLSI and processor interconnect for much of our analysis. We then show how to scale the fat-stack from a VLSI graph layout to a large-scale distributed topology and how the network can be an effective benchmark architecture. Our universality proofs show that a fat-stack of area Θ(A) can simulate any competing network of area A with [Formula: see text] overhead independently of wire delay. The universality result implies that the fat-stack of a given size is nearly the best routing network of that size. The fat-stack is also the minimal universal network for an [Formula: see text] overhead in terms of number of links. Actual simulations show that the fat-stack outperforms a mesh-based distributed network of comparable hardware usage. Our work helps explain why some deployed networks function in the way they do in terms of routing. It also provides an exemplary network of proven efficiency and scalability for building new distributed systems.


The amount of plastic waste in India is reaching a gigantic scale. Wastes from household, industries and medical facilities contribute towards this. As the plastic waste is a cause of various environmental and health hazards, its proper management that leads to an effective reuse or disposal is a concern for the Government and civic bodies. Waste plastic, when added to hot aggregates, forms a fine coat of plastic over the aggregates and such aggregates, when mixed with the binder is found to give a mix that has higher strength and resistance towards the deteriorative actions of water. Thus, (the bituminous Roads using waste plastic in the wearing course) also called as plastic roads are now gaining popularity in India. With the Indian Road Congress bringing out a code of specifications on plastic roads (IRC SP: 98 -2013), many agencies are coming forward to implement plastic roads in India as it is a sustainable method and also need of the hour. However, for a large scale implementation, the performance and longevity of these roads need to be evaluated comprehensively. This paper presents the various properties of bituminous mix with 8% waste plastic when compared with normal bituminous mix with the help of a comparative case study. In Pune, Maharashtra, India ten city roads which were overlaid with normal bituminous mix and ten roads which were overlaid by bitumen mixed with shredded waste plastic were studied for their performance over duration of two years from the time of laying of the overlays. Laboratory experiments and on- field tests were carried out to evaluate their functional and performance characteristics after they were opened to traffic. The results report an improved performance of plastic roads over the conventional ones.


2013 ◽  
Vol 275-277 ◽  
pp. 1203-1206
Author(s):  
Chao Wei Chen

Ansys, the large-scale general FE program, was used to establish computational models of 3×16m-long integral abutment skew bridge with different skew angle to analyze the mechanical characteristics of pile base under the temperature load. Through the analysis of parameters, some helpful conclusions, which would pave the way for further exploration on mechanical behavior of integral abutment skew bridge, were reached.


2020 ◽  
Vol 16 (4) ◽  
pp. 730-744
Author(s):  
V.I. Loktionov

Subject. The article reviews the way strategic threats to energy security influence the quality of people's life. Objectives. The study unfolds the theory of analyzing strategic threats to energy security by covering the matter of quality of people's life. Methods. To analyze the way strategic threats to energy security spread across cross-sectoral commodity and production chains and influences quality of people's living, I applied the factor analysis and general scientific methods of analysis and synthesis. Results. I suggest interpreting strategic threats to energy security as risks of people's quality of life due to a reduction in the volume of energy supply. I identified mechanisms reflecting how the fuel and energy complex and its development influence the quality of people's life. The article sets out the method to assess such quality-of-life risks arising from strategic threats to energy security. Conclusions and Relevance. In the current geopolitical situation, strategic threats to energy security cause long-standing adverse consequences for the quality of people's life. If strategic threats to energy security are further construed as risk of quality of people's life, this will facilitate the preparation and performance of a more effective governmental policy on energy, which will subsequently raise the economic well-being of people.


Author(s):  
Ahmed Abdalla ◽  
Suhad Mohammed ◽  
Tang Bin ◽  
Jumma Mary Atieno ◽  
Abdelazeim Abdalla

This paper considers the problem of estimating the direction of arrival (DOA) for the both incoherent and coherent signals from narrowband sources, located in the far field in the case of uniform linear array sensors. Three different methods are analyzed. Specifically, these methods are Music, Root-Music and ESPRIT. The pros and cons of these methods are identified and compared in light of different viewpoints. The performance of the three methods is evaluated, analytically, when possible, and by Matlab simulation. This paper can be a roadmap for beginners in understanding the basic concepts of DOA estimation issues, properties and performance.


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Hossam A. Gabbar ◽  
Ahmed M. Othman ◽  
Muhammad R. Abdussami

The evolving global landscape for electrical distribution and use created a need area for energy storage systems (ESS), making them among the fastest growing electrical power system products. A key element in any energy storage system is the capability to monitor, control, and optimize performance of an individual or multiple battery modules in an energy storage system and the ability to control the disconnection of the module(s) from the system in the event of abnormal conditions. This management scheme is known as “battery management system (BMS)”, which is one of the essential units in electrical equipment. BMS reacts with external events, as well with as an internal event. It is used to improve the battery performance with proper safety measures within a system. Therefore, a safe BMS is the prerequisite for operating an electrical system. This report analyzes the details of BMS for electric transportation and large-scale (stationary) energy storage. The analysis includes different aspects of BMS covering testing, component, functionalities, topology, operation, architecture, and BMS safety aspects. Additionally, current related standards and codes related to BMS are also reviewed. The report investigates BMS safety aspects, battery technology, regulation needs, and offer recommendations. It further studies current gaps in respect to the safety requirements and performance requirements of BMS by focusing mainly on the electric transportation and stationary application. The report further provides a framework for developing a new standard on BMS, especially on BMS safety and operational risk. In conclusion, four main areas of (1) BMS construction, (2) Operation Parameters, (3) BMS Integration, and (4) Installation for improvement of BMS safety and performance are identified, and detailed recommendations were provided for each area. It is recommended that a technical review of the BMS be performed for transportation electrification and large-scale (stationary) applications. A comprehensive evaluation of the components, architectures, and safety risks applicable to BMS operation is also presented.


Sign in / Sign up

Export Citation Format

Share Document