Control of Air Cylinder Actuator with Common Bias Pressure

2011 ◽  
Vol 23 (6) ◽  
pp. 991-998
Author(s):  
Kiyoshi Hoshino ◽  
◽  
Weragala Don Gayan Krishantha

In this study, we propose a control algorithm for a pneumatic actuator that has dynamics and features similar to those of the human muscle, mainly with the aim of helping elderly persons communicate. The algorithm in this study can estimate gains by using a simple method with a double-acting air cylinder and can realize accurate speed control and position control. Specifically, we aimed to achieve quick response and less overshoot by providing a PD controller for common bias pressure control, that can generate passive stiffness, in addition to a PID controller capable of controlling disturbance and target tracking without any complicated control system. We performed gain estimation by first theoretically estimating the PID gain and then determining the optimum PD gain by actually moving an air cylinder. We tried controlling a system consisting of one air cylinder and a solenoid valve and found that the overshoot, which was nearly 30% with only the PID controller, was controlled to 4%, while the rise time was less than 200 ms of that when only the PID controller was used.

2011 ◽  
Vol 23 (6) ◽  
pp. 1024-1030 ◽  
Author(s):  
Naoki Igo ◽  
◽  
Kiyoshi Hoshino

We proposed a control algorithm for pneumatic actuators which can realize accurate position control. Specifically, the controller achieves quick response and less overshoot using the conventional proportional controller (P-controller) with an offset pressure controller which may increase or decrease the rigidity to the pneumatic actuators. The experimental results showed that a rise time was almost the same as that of the conventional PD controller but a tracking accuracy was improved when the lamp input was given as the target.


2019 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Chun-Ying Lin ◽  
Fang-Cheng Shen ◽  
Kuo-Tsai Wu ◽  
Huei-Huang Lee ◽  
Sheng-Jye Hwang

The present study constructs a servo–hydraulic system to simulate the filling and packing processes of an injection molding machine. Experiments are performed to evaluate the velocity and position control of the system in the filling stage and the pressure control in the packing stage. The results demonstrate that the proposed system meets the required performance standards when operated with the proportional-integral–derivative (PID) controller under a sampling frequency of 1000 Hz.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhao Xiangyang ◽  
Xu Wen-bo ◽  
Gang Liu

In order to improve the braking performance and safety performance of electric vehicles driven by a hub motor, the cylinder pressure estimation and pressure control of its hydraulic braking system are studied. In this paper, a mathematical model is established for the solenoid valve, a key component of the hydraulic actuator, and the hydraulic and electrical characteristics of the solenoid valve are studied. A state equation is established for the solenoid valve, and the square root volume Kalman filter (SRCKF) algorithm is used to estimate the solenoid valve spool position. The brake fluid flow and brake wheel cylinder pressure are calculated based on the spool position. Finally, a solenoid valve spool position control algorithm based on sliding mode variable structure algorithm is designed, and the brake pressure in the brake wheel cylinder is controlled by adjusting the spool position. Matlab/Simulink-AMESim software simulation and hardware-in-the-loop were used to verify the algorithm. Simulation results show that the brake cylinder pressure can be estimated accurately, and the pressure control algorithm can accurately follow the control target value.


2013 ◽  
Vol 62 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Andrzej Ruszewski ◽  
Andrzej Sobolewski

Abstract The paper presents the problem of position control of DC motor with rated voltage 24 V loaded by flywheel. The fractional order PD controller implemented in National Instruments NI ELVIS II programmed in LabView is used for controlling. The simple method for determining stability regions in the controller parameters space is given. Knowledge of these regions permits tuning of the controller and ensures required the phase margin of the system


2020 ◽  
Vol 10 (9) ◽  
pp. 3179
Author(s):  
Changqing Liu ◽  
Jianjun Zhao ◽  
Jinheng Gu ◽  
Yuefeng Du ◽  
Zhen Li ◽  
...  

In order to realize the pressure control of the tractor electronic hydraulic hitch in the fields, the pressure control algorithm is essential. In this study, combining the kinematics model with the dynamic model of ploughing and the hydraulic system model, an adaptive fuzzy PID controller is proposed to adjust the real-time data of the PID parameters for the pressure control of the tractor electronic hydraulic hitch. The feasibility of the proposed controller was verified by simulation. Next, a pressure control experimental with the real vehicle experiment platform was carried out under three control algorithms of the traditional PID, the traditional PID with compensation correction and the adaptive fuzzy PID with compensation correction in verifying the pressure control effect of the tractor in different controllers. When the system was stable, the experimental results showed that the input was 1.5 MPa step signal with response time in the traditional PID controller of 2.5 s, fluctuation range of 0.5 MPa. However, the response time in the adaptive fuzzy PID with compensation correction was 1.5 s, fluctuation range of 0.3 MPa. The responding time was 40% lower, and the pressure fluctuation range was reduced by 40%. In conclusion, the proposed algorithm successfully realized the pressure control of the tractor. The proposed adaptive fuzzy PID with compensation correction in this paper has a better dynamic performance.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3498
Author(s):  
Youqiang Zhang ◽  
Cheol-Su Jeong ◽  
Minhyo Kim ◽  
Sangrok Jin

This paper shows the design and modeling of an end effector with a bidirectional telescopic mechanism to allow a surgical assistant robot to hold and handle surgical instruments. It also presents a force-free control algorithm for the direct teaching of end effectors. The bidirectional telescopic mechanism can actively transmit force both upwards and downwards by staggering the wires on both sides. In order to estimate and control torque via motor current without a force/torque sensor, the gravity model and friction model of the device are derived through repeated experiments. The LuGre model is applied to the friction model, and the static and dynamic parameters are obtained using a curve fitting function and a genetic algorithm. Direct teaching control is designed using a force-free control algorithm that compensates for the estimated torque from the motor current for gravity and friction, and then converts it into a position control input. Direct teaching operation sensitivity is verified through hand-guiding experiments.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


2013 ◽  
Vol 717 ◽  
pp. 592-597
Author(s):  
Surachai Panich

This paper introduced the rehabilitation for leg lower limp with exoskeleton suit. The rehabilitation is mainly classified in three modes, which are active, passive and active - assistive mode. In active mode, it provides appropriate resistance to the muscles to increase endurance and strength, because the patients must lift leg lower limp by their effort. In passive mode, patients cannot participate in process of rehabilitation and no effort is required, because patients leg lower limb will be driven by exoskeleton suit. In the last active-assistive mode is the combination of active and passive mode for patients, who has capability to move their joints but not reached the desired level. The control algorithm is designed to achieve rehabilitation modes by using classical PID controller.


Sign in / Sign up

Export Citation Format

Share Document