scholarly journals Analysis of methods and methods of diagnosing internal combustion engines by non-assembly control methods

Author(s):  
Serhii Bilyk ◽  
Eduard Bozhko

The question of interaction of schemes of diagnostics of engines by methods of non-disassembled control is considered, the analysis of existing methods is executed, and the use of the complex approaches increasing reliability of work of engines is offered. Methods of non-detachable diagnostics with modeling of deregulation of engine systems during operation and diagnosing the initial stages of structural and functional malfunctions are analyzed. The analysis allowed to determine the direct diagnostic parameters that unambiguously characterize the state of the object and indirect, associated with direct functional dependencies, and identify the most effective, in terms of determining correlations - direct diagnostic methods, which include, for example, indication of the working process in the engine cylinder. A relatively simple scheme of measuring and determining signals from several diagnostic elements simultaneously is proposed, from which we can conclude that information from one measurement channel can comprehensively characterize the technical condition of several elements of engine mechanisms or systems: vibration method, acoustic method, gas chromatography methods, indirect indication by determining the stress in the studs of the cylinder head, assessing the level of wear of parts on the metal content in the engine oil, as well as diagnosing the parameters of the uneven speed of the crankshaft. Analysis of methods and techniques for diagnosing internal combustion engines led to the conclusion that the method of diagnosing the uneven speed of the engine crankshaft is a promising direction in the development of methods of non-demountable diagnostics of internal combustion engines. residual life and monitor the technical condition of the engine.

2021 ◽  
pp. 146808742110129
Author(s):  
Hidemi Ogihara ◽  
Takumi Iwata ◽  
Yuji Mihara ◽  
Makoto Kano

Internal combustion engines have been improved markedly in recent years through efforts to conserve resources, reduce emissions and improve fuel efficiency. In this regard, the authors have been working to reduce friction and improve the seizure properties of the crankshaft main journal and main bearing. These mechanical components of internal combustion engines incur large friction losses. In order to reduce friction, journals have been coated with a diamond-like carbon (DLC) coating, which has been reported to reduce friction in the fluid lubrication regime in recent years. Another current issue of journals and bearings is the need to improve seizure resistance. Therefore, these properties were evaluated for material combinations of aluminium alloy bearings and DLC-coated journals, which have low affinity. The results revealed that friction was reduced under a fluid lubrication regime and seizure resistance was improved under a mixed lubrication regime.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2020 ◽  
pp. 10-16
Author(s):  
S.A. Belov ◽  
I.V. Busin

The article reviews four existing technologies for replacing engine oil and a method for determining its suitability for improving economic efficiency. It is established that the oil is replaced according to the need in accordance with the defect indicators. This technology of oil condition is characterized by a more complete use of its resource. The frequency of replacement is determined by the indicators of condition, which is monitored by special sensors built into the engine lubrication system. However, the difficulty of using this technology is due to the lack of high-quality devices for monitoring the state of running engine oil in the engine.


2020 ◽  
pp. 492-498
Author(s):  
A.M. Kolokatov

The characteristics of diamond bars when honing engine cylinder liners are analyzed and general recommendations are given for their selection and processing modes.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-121
Author(s):  
Oleksandr Khrulev ◽  
◽  
Olexii Saraiev ◽  
Iryna Saraieva ◽  
◽  
...  

The analysis of the crankshaft bearing condition of the automotive internal combustion engines in the case of insufficiency and breakage of oil supply to them is carried out. It is noted that this fault is one of the most common causes of damage to rubbing pairs in operation. At the same time, the different groups of bearings are often damaged, which cannot be explained within the framework of existing models of plain bearing lubrication. The objective of the work is to develop a mathematical model of oil supply to connecting rod bearings in emergency mode, taking into account the characteristic features of the bearing design. The model also, depending on the nature of the damage, should help to determine and explain the causes of bearing failures if they occur in different modes when operating conditions are broken. A computational model has been developed that makes it possible to assess the effect of design differences in the features of oil supply and the action of the centrifugal forces during crankshaft rotation on the oil column in the lubrication hole where oil is supplied to the conrod bearing. Calculations of the change in time of the oil supply pressure to the connecting rod bearings for the various designs of the crankshaft lubrication holes have been performed. It is shown that, depending on the operating mode of the engine and its design, the oil pressure in front of the connecting rod bearings does not disappear immediately after oil supply failure to crankshaft. Moreover, the lower the crankshaft speed is, the longer the lubrication of the conrod bearings will continue. The calculation results are confirmed by the data of the expert studies of the engine technical condition, in which the crankshaft was wedged in the damaged main bearings was found in the absence of serious damage to the connecting rod ones. It has been found that such features of the damage correspond to an rapid breakage of the oil supply to the crankshaft in the case of such operational damage as the oil pump and pressure reducing valve failure, the oil filter seal and oil pan destruction, etc. The developed model explains the difference in lubrication conditions and in the damage feature to the main and connecting rod bearings in the emergency cases of the oil supply breakage, which are observed during operation, and helps to clarify the failure causes. This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines when the operating conditions are broken.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2019 ◽  
Vol 287 ◽  
pp. 06005
Author(s):  
Aliaksandar Ilyushchanka ◽  
Vyacheslav Kaptsevich ◽  
Valeria Korneeva ◽  
Ruslan Kusin ◽  
Igar Zakreuski ◽  
...  

The article discusses the use of powder filter materials (PFM) for cleaning engine oil when running-in internal combustion engines (ICE) of agricultural vehicles at motor repair enterprises. The results of comparative tests of powder, paper and net filter elements (FE) are presented. The design of the equipment for cleaning engine oil during and after run-in the engine is proposed.


2018 ◽  
Vol 182 ◽  
pp. 01027
Author(s):  
Jan Monieta

The intensity of infrared radiation emitted by objects depends mainly on their temperature. One of the diagnostic signals may be the temperature field. In infrared thermography, this quantity is used as an indicator of the technical condition of marine objects. The article presents an overview of the use of infrared thermography for the diagnosis mainly of marine piston floating objects and various types of reciprocating internal combustion engines as well as examples of own research results. A general introduction to infrared thermography and common procedures for temperature measurement and non-destructive testing are presented. Experimental research was carried out both in laboratory conditions and in the operating conditions of sea-going vessels. Experimental studies consisted of the presentation of photographs of the same objects made in visible light and the use of infrared thermography. The same objects were also compared, but for different cylinders of the tested internal combustion engines as well as for the up state and fault state. The characteristics of the temperature values at selected points were taken depending on the engine load along with the approximation mathematical models of these dependencies.


2005 ◽  
Vol 127 (1) ◽  
pp. 206-212
Author(s):  
T. Icoz ◽  
Z. Dursunkaya

Blowback of engine oil suspended in combustion gases, when the gas flows from the piston second land back into the combustion chamber, is believed to contribute to oil consumption and hydrocarbon emissions in internal combustion engines. Oil accumulation in the region between top and second compression rings is a factor that influences this phenomenon. The effects of individual parameters, such as oil film thickness and viscosity, however, have still not been understood. The present study was aimed at constructing an experimental setup to study the effect of oil film thickness on oil accumulation in the second land of internal combustion engines. Due to the inherent difficulties of experimentation on production engines, a modeled piston-cylinder assembly was constructed. Total oil accumulation in the modeled second land after a single piston stroke was measured and compared to oil consumption in operating engines.


Sign in / Sign up

Export Citation Format

Share Document