scholarly journals Karakteristik Penyebaran Api Ketika Terjadi Kebakaran Berbasis Metode FDS (Fire Dynamics Simulator) pada Parkiran Sepeda Motor Kampus A Universitas Negeri Jakarta

2016 ◽  
Vol 3 (3) ◽  
pp. 165-173
Author(s):  
Pratomo Setyadi

Penelitian ini dilatar belakangi karena melihat kondisi bangunan parkiran depan Kampus A Universitas NegeriJakarta yang pembangunan tersendat tetapi sudah dipergunakan untuk khayalayak di khawatirkan dapat membahayakanpenghuni, dan karyawan yang bekerja di gedung parkiran tersebut apabila terjadi kebakaran. Penelitian ini bertujuan untukmenentukan kriteria bahaya kebakaran pada parkiran sepeda motor kampus A UNJ. Dalam penelitian ini digunakan SoftwareFire Dynamics Simulator Version 5.0 untuk membuat suatu pemodelan kebakaran berdasarkan titik awal nyala api dan arahangin.Pada penelitian ini akan membahas tentang perkembangan api dimana perkembangan api tersebut akandirepresentasikan oleh HRR (Heat Release Rate), burning rate, dan visualisasi dari masing-masing simulasi. Langkah inisangat menguntungkan karena dapat mengetahui bagaimana penyebaran api saat terjadi kebakaran dan seberapa bahayakebakaran yang disimulasikan. Dengan adanya fire modelling ini dapat menjadi pendekatan engineering praktis untukmemberikan peninjauan tambahan terhadap aspek keselamatan kebakaran pada gedung parkiran kampus A UniveristasNegeri Jakarta. Dari hasil penelitian ini dapat disimpulkan bahwa cepatnya penyebaran api dipengaruhi titik awalnya api,kecepatan dan arah angin. Dimana semakin besar nilai HRR maka semakin besar pula nilai burning rate yang didapatkandan semakin besar pula tingkat kebakaran yang terjadi.

2017 ◽  
Vol 4 (2) ◽  
pp. 89-98
Author(s):  
Pratomo Setyadi ◽  
Yola Furqaan Nanda

Penelitian ini dilatarbelakangi karena melihat kondisi bangunan parkiran depan Kampus A Universitas NegeriJakarta yang pembangunan tersendat tetapi sudah dipergunakan untuk khayalayak di khawatirkan dapat membahayakanpenghuni, dan karyawan yang bekerja di gedung parkiran tersebut apabila terjadi kebakaran. Penelitian ini bertujuan untukmenentukan kriteria bahaya kebakaran pada parkiran sepeda motor kampus A UNJ. Dalam penelitian ini digunakanSoftware Fire Dynamics Simulator Version 5.0 untuk membuat suatu pemodelan kebakaran berdasarkan titik awal nyala apidan arah angin.Pada penelitian ini akan membahas tentang perkembangan api dimana perkembangan api tersebut akandirepresentasikan oleh HRR (Heat Release Rate), burning rate, dan visualisasi dari masing-masing simulasi. Langkah inisangat menguntungkan karena dapat mengetahui bagaimana penyebaran api saat terjadi kebakaran dan seberapa bahayakebakaran yang disimulasikan. Dengan adanya fire modelling ini dapat menjadi pendekatan engineering praktis untukmemberikan peninjauan tambahan terhadap aspek keselamatan kebakaran pada gedung parkiran kampus A UniveristasNegeri Jakarta. Dari hasil penelitian ini dapat disimpulkan bahwa cepatnya penyebaran api dipengaruhi titik awalnya api,kecepatan dan arah angin. Dimana semakin besar nilai HRR maka semakin besar pula nilai burning rate yang didapatkandan semakin besar pula tingkat kebakaran yang terjadi.


2020 ◽  
Vol 34 (4) ◽  
pp. 22-28
Author(s):  
Dong-Gun Nam ◽  
Ter-Ki Hong ◽  
Myung-Ho Ryu ◽  
Seul-Hyun Park

The heat release rate (HRR) of fire for solid combustibles, consisting of multi-materials, was measured using the ISO 9705 room corner test, and a computational analysis was conducted to simulate the fire using an HRR prediction model that was provided by a fire dynamics simulator (FDS). As the solid combustible consisted of multi-materials, a cinema chair composed primarily of PU foam, PP, and steel was employed. The method for predicting the HRR provided by the FDS can be categorized into a simple model and a pyrolysis model. Because each model was applied and computational analysis was conducted under the same conditions, the HRR and fire growth rate predicted by the pyrolysis model had good agreement with the results obtained using the ISO 9705 room corner test.


2014 ◽  
Vol 161 (12) ◽  
pp. 3237-3248 ◽  
Author(s):  
Virginie Tihay ◽  
Frédéric Morandini ◽  
Paul-Antoine Santoni ◽  
Yolanda Perez-Ramirez ◽  
Toussaint Barboni

2021 ◽  
Vol 13 (16) ◽  
pp. 9193
Author(s):  
Wen-Yao Chang ◽  
Chieh-Hsin Tang ◽  
Ching-Yuan Lin

Historical buildings often fail to meet today’s building and fire protection regulations due to their structure and space restrictions. For this reason, if such buildings encounter fire, serious damage will be resulted. The fire of the Notre-Dame Cathedral in Paris (Notre-Dame de Paris) in April 2019 highlights the seriousness of this problem. In this study, the historical building of “Tamsui Church” was selected as an example. The Fire Dynamics Simulator (FDS) was adopted to analyze the scale of damage and possible hazards when the wooden seats in the church are on fire, and improvement measures were proposed to ensure that such buildings can be used under safer conditions. It was found that the existing seat arrangement will cause the spreading of fire, and the maximum heat release rate is 2609.88 kW. The wooden roof frame above the fire source will also start to burn at 402.88 s (6.6 min) after the fire, which will lead to a full-scale fire. To maintain the safety of the historical building, it is necessary to add active firefighting equipment (smoke detector and water mist system).


Author(s):  
Charles Luo ◽  
Soroush Yazdani ◽  
Brian Y. Lattimer

Large scale flammability performance of interior finish used on railcars has been evaluated in previous studies using the NFPA 286 room corner fire test, which has a cross-section similar to a railcar. In some studies, the wall containing the door was removed to account for the shorter length of the room compared to the railcar length. The focus of this study is to assess whether the NFPA 286 standard room-corner test with a door represents conditions that developed inside a railcar during a fire. Fire Dynamics Simulator (FDS) was used to model the fire growth in a NFPA 286 standard room-corner test with a door, NFPA 286 room without the wall containing the door, and railcar geometry with a single door open. All three cases had the same exposure fire in a corner and the same lining material. In predictions of the NFPA 286 room-corner test with a door, gas temperature, heat release rate, and time to flashover agreed well with available NFPA 286 standard test data. The simulation results of fire growth inside a railcar with one side door open produced similar conditions and fire growth compared with the standard NFPA 286 room with a door. For simulations on the NFPA 286 room with the wall containing the door removed, it was found that removal of the wall with the door resulted in non-conservative fire growth conditions with the gas temperature and heat release rate under-estimated compared to the standard NFPA 286 room with a door. These simulations indicate that the standard NFPA 286 room-corner test with a door is representative of conditions that would develop inside of a railcar.


Author(s):  
Qiuju Ma ◽  
Quanyi Liu ◽  
Runhe Tian ◽  
Junjian Ye ◽  
Rui Yang ◽  
...  

This research aims to investigate the effect of ambient pressure on the burning rate and heat release rate (HRR) of n-heptane pool fire. The experiments were performed in a large-scale altitude chamber of size 2 m×3 m×4.65 m under series of pressure, 24kpa, 38 kPa, 64 kPa and 75 kPa to 90 kPa. A round steel fuel pans of 34 cm in diameter and 15 cm in height was chosen for the pool fire tests. The fuel pan was filled with 99% pure liquid n-Heptane. Experimental results show that the burning rate increases rapidly after ignition until it reaches to the peak, and then maintains at a relatively stable stage. It decreases gradually until the flame extinguishes. The burning time is longer at lower pressure. The mean mass burning rate at the steady burning stage increases exponentially with pressure as ṁ ∼ Pα, with α = 0.68. HRR curve has a similar trend with the burning rate. The maximum HRR increases from 27kW to 62kW as the pressure rises from 24kPa to 90kPa. It is concluded that the ambient pressure has a significant effect on the fire heat release rate, and will further influent on other fire parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
N. Cai ◽  
W. K. Chow

Heat release rate (HRR) of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD) in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS) version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.


2020 ◽  
Vol 194 ◽  
pp. 05061
Author(s):  
GENG Pengqiang ◽  
WANG Zihao ◽  
WENG Miaocheng ◽  
LIU Fang

.This paper uses Fire Dynamics Simulator (FDS) to study the effect of the longitudinal distance from the shaft to the fire source on the natural smoke exhaust of the tunnel fire with one closed portal, and analyzes the temperature distribution of the smoke and the shaft’s smoke exhaust efficiency. The results show that when the shaft is located downstream of the fire source (Ds<0), with the increase of the distance from the shaft to the fire source, the smoke exhaust efficiency decreases first and then stabilizes at a fixed value. At this time, the ceiling temperature attenuation’s coefficient at upstream of the fire source is only related to the heat release rate of the fire source (HRR). When the shaft is located upstream of the fire source (Ds>0), the smoke exhaust efficiency increases slightly with the increase of the distance from the shaft to the fire source, but the overall value is relatively small. When HRR is fixed, the shaft located downstream of the fire source has a higher smoke exhaust efficiency. As the distance between the shaft and the fire source increases, the plug phenomenon decreases.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Andrew J. Kurzawski ◽  
Ofodike A. Ezekoye

Abstract In fire hazard calculations, knowledge of the heat-release rate (HRR) of a burning item is imperative. Typically, room-scale calorimetry is conducted to determine the HRRs of common combustible items. However, this process can be prohibitively expensive. In this work, a method is proposed to invert for the HRR of a single item burning in a room using transient heat flux measurements at the walls and ceiling near the item. The primary device used to measure heat flux is the directional flame thermometer (DFT). The utility of the inverse method is explored on both synthetically generated and experimental data using two so-called forward models in the inversion algorithm: fire dynamics simulator (FDS) and the consolidated model of fire and smoke transport (CFAST). The fires in this work have peak HRRs ranging from 200 kW to 400 kW. It was found that FDS outperformed CFAST as a forward model at the expense of increased computational cost and that the error in the inverse reconstruction of a 400 kW steady fire was on par with room-scale oxygen consumption calorimetry.


2021 ◽  
Vol 322 ◽  
pp. 127-135
Author(s):  
Nicole Svobodová ◽  
Martin Benýšek ◽  
Radek Štefan

This paper is focused on a comparison of zone fire modelling software tools and their application in structural fire design. The analysis of the zone models is performed for five selected computer programs, namely Argos, Branzfire, B-RISK, CFAST, and OZone. The limits and input parameters ofthe zone fire modelling software tools are described. In each software, two variants of the analysed compartment are created for simulating two types of fire scenario, including the fuel-controlled fire and the ventilation-controlled fire. The burning regimes are defined based on two heat release rate(HRR) curves, determined according to EN 1991-1-2. The HRR curves parameters are used as the main input data into the fire modelling software. The fire simulation method in each fire modelling software is selected based on the software capabilities. Although each program requires a different amount of input parameters, the aim was to create the same model in all programs and to compare the results. The fire modelling software outputs are exported into a spreadsheet. Subsequently, a comparison of the resulting graphs is performed, particularly the heat release rate graphs and the upper layertemperature evolution graphs. The fire resistance assessment of a simply-supported concrete slab panel is performed for all zone fire models and then the results are compared. The fire modelling software tools are finally quantitatively and qualitatively evaluated and compared to assess their differences.


Sign in / Sign up

Export Citation Format

Share Document