pyrolysis model
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122130
Author(s):  
Dan Wang ◽  
Tao Zhang ◽  
Lin Yang ◽  
Lianzheng Zhang ◽  
Dongmei Xu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3980
Author(s):  
M. M. Harussani ◽  
Umer Rashid ◽  
S. M. Sapuan ◽  
Khalina Abdan

Yields of carbonaceous char with a high surface area were enhanced by decreasing the temperature to improve the conversion of hazardous plastic polypropylene (PP), the major component in abundantly used isolation gowns. This study applied pyrolysis with different low pyrolytic temperatures to convert disinfected PP-based isolation gown waste (PP-IG) into an optimised amount of char yields. A batch reactor with a horizontal furnace was used to mediate the thermal decomposition of PP-IG. Enhanced surface area and porosity value of PP-IG derived char were obtained via an optimised slow pyrolysis approach. The results showed that the amount of yielded char was inversely proportional to the temperature. This process relied heavily on the process parameters, especially pyrolytic temperature. Additionally, as the heating rate decreased, as well as longer isothermal residence time, the char yields were increased. Optimised temperature for maximum char yields was recorded. The enhanced SBET values for the char and its pore volume were collected, ~24 m2 g−1 and ~0.08 cm3 g−1, respectively. The char obtained at higher temperatures display higher volatilisation and carbonisation. These findings are beneficial for the utilisation of this pyrolysis model in plastic waste management and conversion of PP-IG waste into char for further activated carbon and fuel briquettes applications, with the enhanced char yields, amidst the COVID-19 pandemic.


2021 ◽  
Vol 11 (22) ◽  
pp. 10570
Author(s):  
Hermes Scandelli ◽  
Azita Ahmadi-Senichault ◽  
Jean Lachaud ◽  
Franck Richard

The numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis, which leads to the production of various gaseous species, and the combustion of these species in the flame, which produces the energy that sustains the pyrolysis process. Experimental and numerical works of the fire community are targeted towards improving the description of the pyrolysis process to better predict the rate of production and the chemical nature of the pyrolysis gases. We know that wood pyrolysis leads to the production of a large variety of chemical species: water, methane, propane, carbon monoxide and dioxide, phenol, cresol, hydrogen, etc. With the idea of being able to capitalize on such developments to study more accurately the physics of fire propagation, we have developed a numerical framework that couples a detailed three-dimensional pyrolysis model and fireFoam. In this article, we illustrate the capability of the simulation tool by treating the combustion of a wood log. Wood is considered to be composed of three phases (cellulose, hemicellulose and lignin), each undergoing parallel degradation processes leading to the production of methane and hydrogen. We chose to simplify the gas mixture for this first proof of concept of the coupling of a multi-species pyrolysis process and a flame. In the flame, we consider two separate finite-rate combustion reactions for methane and hydrogen. The flame evolves during the simulation according to the concentration of the two gaseous species produced from the material. It appears that introducing different pyrolysis species impacts the temperature and behavior of the flame.


2021 ◽  
Author(s):  
Shiqiao Yang ◽  
Qingfeng Kong ◽  
Dewang Zeng ◽  
Shiliang Wu ◽  
Feng Gong ◽  
...  

Abstract In this paper, a counter-flow rotary kiln incineration system with a processing capacity of 40 t/d of an environmental protection company in Jiangsu Province was used as the research object, and the mixed pyrolysis model and computational fluid dynamics(CFD)model of the counter-flow rotary kiln incineration system were established using Aspen plus and Fluent software. The influence of the operating temperature of the rotary kiln, the heating value of solid waste, the operating load of the rotary kiln, and the primary air volume and primary air speed on the operating effect of the rotary kiln were explored. Operating temperature, primary air volume and wind speed can all have a greater impact on the incineration performance of the counterflow rotary kiln. When the operating temperature of the counter-flow rotary kiln is greater than 800 o C, the hazardous waste heat value is not less than 1500 kcal/kg, and the primary wind speed is 1.5 m/s, the operating effect of the counter-flow rotary kiln incineration system is the best. The simulation results can provide theoretical guidance for the design and optimal operation of the counterflow rotary kiln incineration system.


2021 ◽  
pp. 073490412110366
Author(s):  
Junhui Gong ◽  
Hongen Zhou ◽  
Hong Zhu ◽  
Conor G McCoy ◽  
Stanislav I Stoliarov

Oriented strand board is a widely used construction material responsible for a substantial portion of the fire load of many buildings. To accurately model oriented strand board fire response, kinetics and thermodynamics of its thermal decomposition and combustion were carefully characterized using milligram-scale testing in part I of this study. In the current work, Controlled Atmosphere Pyrolysis Apparatus II tests were performed on representative gram-sized oriented strand board samples at a range of radiant heat fluxes. An automated inverse analysis of the sample temperature data obtained in these tests was employed to determine the thermal conductivities of the undecomposed oriented strand board and condensed-phase products of its decomposition. A complete pyrolysis model was formulated for this material and used to predict the mass loss rates measured in the Controlled Atmosphere Pyrolysis Apparatus II experiments. These mass loss rate profiles were predicted well with the exception of the second mass loss rate peak observed at 65 kW m−2 of radiant heat flux, which was underpredicted. To further validate the model, cone calorimeter tests were performed on oriented strand board at 25 and 50 kW m−2 of radiant heat flux. The results of these tests, including both mass loss rate and heat release rate profiles, were predicted reasonably well by the model.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ibiba Taiwo Horsfall ◽  
Macmanus Chinenye Ndukwu ◽  
Fidelis Ibiang Abam ◽  
Ololade Moses Olatunji ◽  
Ojong Elias Ojong ◽  
...  

AbstractNumerical modeling of biomass pyrolysis is becoming a cost and time-saving alternative for experimental investigations, also to predict the yield of the by-products of the entire process. In the present study, a two-step parallel kinetic model was used to predict char yield under isothermal condition. MATLAB ODE45 function codes were employed to solve a set of differential equations that predicts the %char at varying residence times and temperatures. The code shows how the various kinetic parameters and mass of pyrolysis products were determined. Nevertheless, the algorithm used for the prediction was validated with experimental data and results from past works. At 673.15 K, the numerical simulation using ODE45 function gives a char yield of 27.84%. From 573.15 K to 673.15 K, char yield ranges from 31.7 to 33.72% to 27.84% while experimental yield decreases from 44 to 22%. Hence, the error between algorithm prediction and experimental data from literature is − 0.26 and 0.22. Again, comparing the result of the present work with the analytical method from the literature showed a good agreement.


2021 ◽  
pp. 073490412098288
Author(s):  
Junhui Gong ◽  
Hong Zhu ◽  
Hongen Zhou ◽  
Stanislav I Stoliarov

Oriented strand board is a widely used construction material responsible for a substantial portion of the fire load of many buildings. To accurately model the response of oriented strand board to fire, thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry tests were carried out to construct a thermal decomposition model using a numerical solver, ThermaKin, and a hill climbing optimization algorithm. The model included a single-step water vaporization reaction and four consecutive reactions representing thermal decomposition of organic constituents of oriented strand board. The experiments and modeling revealed that the first two of the four reactions are endothermic, while the last two are exothermic. The net heat of decomposition was found to be near zero. The heat capacities of condensed-phase species and heats of combustion of evolved gases were also determined. The heats of combustion were found to vary over the course of decomposition—the trend captured by the model. Development of a complete pyrolysis model for this material will be a subject of Part II of this work.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Lin ◽  
Anthony Chun Yin Yuen ◽  
Timothy Bo Yuan Chen ◽  
Bin Yu ◽  
Wei Yang ◽  
...  

AbstractRecent discoveries of two-dimensional transitional metal based materials have emerged as an excellent candidate for fabricating nanostructured flame-retardants. Herein, we report an eco-friendly flame-retardant for flexible polyurethane foam (PUF), which is synthesised by hybridising MXene (Ti$$_3\hbox {C}_2$$ 3 C 2 ) with biomass materials including phytic acid (PA), casein, pectin, and chitosan (CH). Results show that coating PUFs with 3 layers of CH/PA/Ti$$_3\hbox {C}_2$$ 3 C 2 via layer-by-layer approach reduces the peak heat release and total smoke release by 51.1% and 84.8%, respectively. These exceptional improvements exceed those achieved by a CH/Ti$$_3\hbox {C}_2$$ 3 C 2 coating. To further understand the fundamental flame and smoke reduction phenomena, a pyrolysis model with surface regression was developed to simulate the flame propagation and char layer. A genetic algorithm was utilised to determine optimum parameters describing the thermal degradation rate. The superior flame-retardancy of CH/PA/Ti$$_3\hbox {C}_2$$ 3 C 2 was originated from the shielding and charring effects of the hybrid MXene with biomass materials containing aromatic rings, phenolic and phosphorous compounds.


Sign in / Sign up

Export Citation Format

Share Document