scholarly journals TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia

2021 ◽  
Vol 10 (12) ◽  
pp. 5307-5318
Author(s):  
Lixin Zhou ◽  
Qi Yao ◽  
Le Ma ◽  
Hui Li ◽  
Jieping Chen
2019 ◽  
Vol 18 (10) ◽  
pp. 1457-1468
Author(s):  
Michelle X.G. Pereira ◽  
Amanda S.O. Hammes ◽  
Flavia C. Vasconcelos ◽  
Aline R. Pozzo ◽  
Thaís H. Pereira ◽  
...  

Background: Acute myeloid leukemia (AML) represents the largest number of annual deaths from hematologic malignancy. In the United States, it was estimated that 21.380 individuals would be diagnosed with AML and 49.5% of patients would die in 2017. Therefore, the search for novel compounds capable of increasing the overall survival rate to the treatment of AML cells is urgent. Objectives: To investigate the cytotoxicity effect of the natural compound pomolic acid (PA) and to explore the mechanism of action of PA in AML cell lines with different phenotypes. Methods: Three different AML cell lines, HL60, U937 and Kasumi-1 cells with different mechanisms of resistance were used to analyze the effect of PA on the cell cycle progression, on DNA intercalation and on human DNA topoisomerases (hTopo I and IIα) in vitro studies. Theoretical experiments of the inhibition of hTopo I and IIα were done to explore the binding modes of PA. Results: PA reduced cell viability, induced cell death, increased sub-G0/G1 accumulation and activated caspases pathway in all cell lines, altered the cell cycle distribution and inhibited the catalytic activity of both human DNA topoisomerases. Conclusion: Finally, this study showed that PA has powerful antitumor activity against AML cells, suggesting that this natural compound might be a potent antineoplastic agent to improve the treatment scheme of this neoplasm.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


Blood ◽  
2017 ◽  
Vol 129 (6) ◽  
pp. 771-782 ◽  
Author(s):  
Jason A. Powell ◽  
Alexander C. Lewis ◽  
Wenying Zhu ◽  
John Toubia ◽  
Melissa R. Pitman ◽  
...  

Key Points Inhibition of SPHK1 in human AML cells induces MCL1 degradation and caspase-dependent cell death. SPHK1 inhibitors reduce leukemic burden and prolong survival in orthotopic patient-derived xenografts of AML.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3091-3096 ◽  
Author(s):  
L Campos ◽  
JP Rouault ◽  
O Sabido ◽  
P Oriol ◽  
N Roubi ◽  
...  

The BCL-2 proto-oncogene encodes a mitochondrial protein that blocks programmed cell death. High amounts of bcl-2 protein are found not only in lymphoid malignancies, but also in normal tissues characterized by apoptotic cell death, including bone marrow. Using a monoclonal antibody to bcl-2 protein, we analyzed 82 samples of newly diagnosed acute myeloid leukemia. The number of bcl-2+ cells in each sample was heterogeneous (range, 0% to 95%), with a mean of 23%. The percentage of bcl-2+ cells was higher in M4 and M5 types, according to French- American-British classification, and in cases with high white blood cell counts. bcl-2 expression was also correlated with that of the stem cell marker CD34. In vitro survival of leukemic cells maintained in liquid culture in the absence of growth factors was significantly longer in cases with a high percentage of bcl-2+ cells. High expression of bcl-2 was associated with a low complete remission rate after intensive chemotherapy (29% in cases with 20% or more positive cells v 85% in cases with less than 20% positive cells, P < 10(-5)) and with a significantly shorter survival. In multivariate analysis, the percentage of bcl-2+ cells (or the blast survival in culture), age, and the percentage of CD34+ cells were independently associated with poor survival.


Haematologica ◽  
2021 ◽  
Author(s):  
Rudy Birsen ◽  
Clement Larrue ◽  
Justine Decroocq ◽  
Natacha Johnson ◽  
Nathan Guiraud ◽  
...  

APR-246 is a promising new therapeutic agent that targets p53 mutated proteins in myelodysplastic syndromes and in acute myeloid leukemia. APR-246 reactivates the transcriptional activity of p53 mutants by facilitating their binding to DNA target sites. Recent studies in solid cancers have found that APR-246 can also induce p53-independent cell death. In this study, we demonstrate that AML cell death occurring early after APR-246 exposure is suppressed by iron chelators, lipophilic antioxidants and inhibitors of lipid peroxidation, and correlates with the accumulation of markers of lipid peroxidation, thus fulfilling the definition of ferroptosis, a recently described cell death process. The capacity of AML cells to detoxify lipid peroxides by increasing their cystine uptake to maintain major antioxidant molecule glutathione biosynthesis after exposure to APR-246 may be a key determinant of sensitivity to this compound. The association of APR-246 with induction of ferroptosis (either by pharmacological compounds, or genetic inactivation of SLC7A11 or GPX4) had a synergistic effect on the promotion of cell death, both in vivo and ex vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sook-Kyoung Heo ◽  
Eui-Kyu Noh ◽  
Jeong Yi Kim ◽  
Yoo Kyung Jeong ◽  
Jae-Cheol Jo ◽  
...  

2020 ◽  
Vol 4 (24) ◽  
pp. 6368-6383
Author(s):  
Noortje van Gils ◽  
Han J. M. P. Verhagen ◽  
Arjo Rutten ◽  
Renee X. Menezes ◽  
Mei-Ling Tsui ◽  
...  

Abstract Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) in combination with low doses of arsenic trioxide or chemotherapy leads to exceptionally high cure rates (&gt;90%). ATRA forces APL cells into differentiation and cell death. Unfortunately, ATRA-based therapy has not been effective among any other acute myeloid leukemia (AML) subtype, and long-term survival rates remain unacceptably low; only 30% of AML patients survive 5 years after diagnosis. Here, we identified insulin-like growth factor binding protein 7 (IGFBP7) as part of ATRA-induced responses in APL cells. Most importantly, we observed that addition of recombinant human IGFBP7 (rhIGFBP7) increased ATRA-driven responses in a subset of non-APL AML samples: those with high RARA expression. In nonpromyelocytic AML, rhIGFBP7 treatment induced a transcriptional program that sensitized AML cells for ATRA-induced differentiation, cell death, and inhibition of leukemic stem/progenitor cell survival. Furthermore, the engraftment of primary AML in mice was significantly reduced following treatment with the combination of rhIGFBP7 and ATRA. Mechanistically, we showed that the synergism of ATRA and rhIGFBP7 is due, at least in part, to reduction of the transcription factor GFI1. Together, these results suggest a potential clinical utility of IGFBP7 and ATRA combination treatment to eliminate primary AML (leukemic stem/progenitor) cells and reduce relapse in AML patients.


Sign in / Sign up

Export Citation Format

Share Document