scholarly journals Synthetic Biology: Risks and Prospects

Author(s):  
G. G. Onishchenko ◽  
V. V. Kutyrev ◽  
G. N. Odinokov ◽  
V. A. Safronov

New area of biological studies that goes under general name of “synthetic biology” is a next step in the development of gene engineering associated with design and construction of unique biological systems with “preset” functions and properties, having no natural analogues. Nowadays synthetic biology is a source of innovations that offer solution to a number of global problems facing the humanity, including production of artificial genome-based multi-diagnostic panels, medicinal preparations, synthetic vaccine, etc. The process of unnatural life form creation requires conduction of monitoring both on the international and national scales using advanced system of biological risk assessment.

Work ◽  
2021 ◽  
pp. 1-11
Author(s):  
Carlos Carvalhais ◽  
Micaela Querido ◽  
Cristiana C. Pereira ◽  
Joana Santos

BACKGROUND: The COVID-19 global pandemic brought several challenges to occupational safety and health practice. One of these is the need to (re)assess the occupational risks, particularly, biological risks. OBJECTIVE: The purpose of this work is to promote guidance to occupational safety and health practitioners when conducting a biological risk assessment in this context. METHODS: The main steps of the biological risk assessment are explained with some inputs regarding the novelty posed by SARS-CoV-2 and an example of a qualitative risk assessment method is presented. Also, its application to two different activities was exemplified. RESULTS: In both cases, the assessment considered that vulnerable workers were working from home or in medical leave. The results showed low or medium risk level for the assessed tasks. For medium risk level, additional controls are advised, such maintain social distancing, sanitize instruments/equipment before use, use proper and well-maintained PPE (when applicable), and promote awareness sessions to spread good practices at work. Employers must be aware of their obligations regarding biological risk assessment and OSH practitioners must be prepared to screen and link the abundance of scientific evidence generated following the outbreak, with the technical practice. CONCLUSIONS: This paper could be an important contribution to OSH practice since it highlights the need to (re)assess occupational risks, especially biological risk, to ensure a safe return to work, providing technical guidance.


2021 ◽  
pp. 118037
Author(s):  
Wendy B. Morgado-Gamero ◽  
Alexander Parody ◽  
Jhorma Medina ◽  
Laura A. Rodriguez-Villamizar ◽  
Dayana Agudelo-Castañeda

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Fengyu Zhang ◽  
Yanhong Sun ◽  
Yihao Zhang ◽  
Wenting Shen ◽  
Shujing Wang ◽  
...  

AbstractSynthetic Biology aims to create predictable biological circuits and fully operational biological systems. Although there are methods to create more stable oscillators, such as repressilators, independently controlling the oscillation of reporter genes in terms of their amplitude and period is only on theoretical level. Here, we introduce a new oscillator circuit that can be independently controlled by two inducers in Escherichia coli. Some control components, including σECF11 and NahR, were added to the circuit. By systematically tuning the concentration of the inducers, salicylate and IPTG, the amplitude and period can be modulated independently. Furthermore, we constructed a quantitative model to forecast the regulation results. Under the guidance of the model, the expected oscillation can be regulated by choosing the proper concentration combinations of inducers. In summary, our work achieved independent control of the oscillator circuit, which allows the oscillator to be modularized and used in more complex circuit designs.


2013 ◽  
pp. 637-663
Author(s):  
Bing Zhang ◽  
Zhiao Shi

One of the most prominent properties of networks representing complex systems is modularity. Network-based module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems.


Author(s):  
AlirezaKamali Asl ◽  
MohammadMahdi Mojarrad Kahani ◽  
Samaneh Hashemi ◽  
MasoudMojarrad Kahani ◽  
Mostafa Amini

2017 ◽  
Vol 1 (3) ◽  
pp. 241-243
Author(s):  
Jeffrey Skolnick

As is typical of contemporary cutting-edge interdisciplinary fields, computational biology touches and impacts many disciplines ranging from fundamental studies in the areas of genomics, proteomics transcriptomics, lipidomics to practical applications such as personalized medicine, drug discovery, and synthetic biology. This editorial examines the multifaceted role computational biology plays. Using the tools of deep learning, it can make powerful predictions of many biological variables, which may not provide a deep understanding of what factors contribute to the phenomena. Alternatively, it can provide the how and the why of biological processes. Most importantly, it can help guide and interpret what experiments and biological systems to study.


2020 ◽  
Vol 11 (1) ◽  
pp. 23-31
Author(s):  
Maxwell S. DeNies ◽  
Allen P. Liu ◽  
Santiago Schnell

AbstractThe ability to construct a functional system from its individual components is foundational to understanding how it works. Synthetic biology is a broad field that draws from principles of engineering and computer science to create new biological systems or parts with novel function. While this has drawn well-deserved acclaim within the biotechnology community, application of synthetic biology methodologies to study biological systems has potential to fundamentally change how biomedical research is conducted by providing researchers with improved experimental control. While the concepts behind synthetic biology are not new, we present evidence supporting why the current research environment is conducive for integration of synthetic biology approaches within biomedical research. In this perspective we explore the idea of synthetic biology as a discovery science research tool and provide examples of both top-down and bottom-up approaches that have already been used to answer important physiology questions at both the organismal and molecular level.


Sign in / Sign up

Export Citation Format

Share Document