scholarly journals Application of a Radiation-Derived Temperature Index Model to the Willow Creek Watershed in Idaho, USA

2021 ◽  
Author(s):  
Daniel D. Hamill ◽  
Jeremy J. Giovando ◽  
Chandler S. Engel ◽  
Travis A. Dahl ◽  
Michael D. Bartles

The ability to simulate snow accumulation and melting processes is fundamental to developing real-time hydrological models in watersheds with a snowmelt-dominated flow regime. A primary source of uncertainty with this model development approach is the subjectivity related to which historical periods to use and how to combine parameters from multiple calibration events. The Hydrologic Engineering Center, Hydrological Modeling System, has recently implemented a hybrid temperature index (TI) snow module that has not been extensively tested. This study evaluates a radiatative temperature index (RTI) model’s performance relative to the traditional air TI model. The TI model for Willow Creek performed reasonably well in both the calibration and validation years. The results of the RTI calibration and validation simulations resulted in additional questions related to how best to parameterize this snow model. An RTI parameter sensitivity analysis indicates that the choice of calibration years will have a substantial impact on the parameters and thus the streamflow results. Based on the analysis completed in this study, further refinement and verification of the RTI model calculations are required before an objective comparison with the TI model can be completed.

2018 ◽  
Author(s):  
Chao Chen ◽  
Sajjad Ahmad ◽  
Ajay Kalra

Abstract. In Coupled Groundwater and Surface-Water Flow (GSFLOW) model, the three-dimensional finite-difference groundwater model (MODFLOW) plays a critical role of groundwater flow simulation, together with which the Precipitation-Runoff Modeling System (PRMS) simulates the surface hydrologic processes. While the model development of each individual PRMS and MODFLOW model requires tremendous time and efforts, further integration development of these two models exerts additional concerns and issues due to different simulation realm, data communication, and computation algorithms. To address these concerns and issues in GSFLOW, the present paper proposes a conceptual framework from perspectives of: Model Conceptualization, Data Linkages and Transference, Model Calibration, and Sensitivity Analysis. As a demonstration, a MODFLOW groundwater flow system was developed and coupled with the PRMS model in the Lehman Creek watershed, eastern Nevada, resulting in a smooth and efficient integration as the hydrogeologic features were well captured and represented. The proposed conceptual integration framework with techniques and concerns identified substantially improves GSFLOW model development efficiency and help better model result interpretations. This may also find applications in other integrated hydrologic modelings.


2005 ◽  
Vol 5 (5) ◽  
pp. 10517-10612 ◽  
Author(s):  
G. A. Folberth ◽  
D. A. Hauglustaine ◽  
J. Lathière ◽  
F. Brocheton

Abstract. We present a description and evaluation of LMDz-INCA, a global three-dimensional chemistry-climate model, pertaining to its recently developed NMHC version. In this substantially extended version of the model a comprehensive representation of the photochemistry of non-methane hydrocarbons (NMHC) and volatile organic compounds (VOC) from biogenic, anthropogenic, and biomass-burning sources has been included. The tropospheric annual mean methane (9.2 years) and methylchloroform (5.5 years) chemical lifetimes are well within the range of previous modelling studies and are in excellent agreement with estimates established by means of global observations. The model provides a reasonable simulation of the horizontal and vertical distribution and seasonal cycle of CO and key non-methane VOC, such as acetone, methanol, and formaldehyde as compared to observational data from several ground stations and aircraft campaigns. LMDz-INCA in the NMHC version reproduces tropospheric ozone concentrations fairly well throughout most of the troposphere. The model is applied in several sensitivity studies of the biosphere-atmosphere photochemical feedback. The impact of surface emissions of isoprene, acetone, and methanol is studied. These experiments show a substantial impact of isoprene on tropospheric ozone and carbon monoxide concentrations revealing an increase in surface O3 and CO levels of up to 30 ppbv and 60 ppbv, respectively. Isoprene also appears to significantly impact the global OH distribution resulting in a decrease of the global mean tropospheric OH concentration by approximately 0.9×105 molecules cm−3 or roughly 10% and an increase in the global mean tropospheric methane lifetime by approximately four months. A global mean ozone net radiative forcing due to the isoprene induced increase in the tropospheric ozone burden of 0.09W m−2 is found. The key role of isoprene photooxidation in the global tropospheric redistribution of NOx is demonstrated. LMDz-INCA calculates an increase of PAN surface mixing ratios ranging from 75 to 750 pptv and 10 to 250 pptv during northern hemispheric summer and winter, respectively. Acetone and methanol are found to play a significant role in the upper troposphere/lower stratosphere (UT/LS) budget of peroxy radicals. Calculations with LMDz-INCA show an increase in HOx concentrations region of 8 to 15% and 10 to 15% due to methanol and acetone biogenic surface emissions, respectively. The model has been used to estimate the global tropospheric CO budget. A global CO source of 3019 TgCO yr−1 is estimated. This source divides into a primary source of 1533 TgCO yr−1 and secondary source of 1489 TgCO yr−1 deriving from VOC photooxidation. Global VOC-to-CO conversion efficiencies of 90% for methane and between 20 and 45% for individual VOC are calculated by LMDz-INCA.


Author(s):  
Iason Grigoratos ◽  
Ellen Rathje ◽  
Paolo Bazzurro ◽  
Alexandros Savvaidis

ABSTRACT In the past decade, several parts of central United States, including Oklahoma, have experienced unprecedented seismicity rates, following an increase in the volumes of wastewater fluids that are being disposed underground. In this article, we present a semi-empirical model to hindcast the observed seismicity given the injection time history. Our proposed recurrence model is a modified version of the Gutenberg–Richter relation, building upon the seismogenic index model, which predicts a linear relationship between the number of induced events and the injected volume. Our methodology accounts for the effects of spatiotemporal pore-pressure diffusion, the stressing-rate dependency of the time lag between injection and seismicity rate changes, and the rapid cessation of seismicity upon unloading. We also introduced a novel multiscale regression, which enabled us to produce grid-independent results of increased spatial resolution. Although the model is generic to be applicable in any region and has essentially only two free parameters for spatial calibration, it matches the earthquake time history of Oklahoma well across various scales, for both increasing and decreasing injection rates. In the companion paper (Grigoratos, Rathje, et al., 2020), we employ the model to distinguish the disposal-induced seismicity from the expected tectonic seismicity and test its forecasting potential.


2014 ◽  
Vol 38 (4) ◽  
pp. 1350-1358 ◽  
Author(s):  
Donizete dos Reis Pereira ◽  
André Quintão de Almeida ◽  
Mauro Aparecido Martinez ◽  
David Rafael Quintão Rosa

The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test) of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1), assuming the preservation of PPAs (permanent preservation areas); an optimistic scenario (C2), which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3), in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0) with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.


2019 ◽  
Vol 5 (10) ◽  
pp. eaav8936 ◽  
Author(s):  
A. Tournié ◽  
K. Fleischer ◽  
I. Bukreeva ◽  
F. Palermo ◽  
M. Perino ◽  
...  

Only a few Herculaneum rolls exhibit writing on their reverse side. Since unrolled papyri are permanently glued to paperboard, so far, this fact was known to us only from 18th-century drawings. The application of shortwave-infrared (SWIR; 1000-2500 nm) hyperspectral imaging (HSI) to one of them (PHerc. 1691/1021) has revealed portions of Greek text hidden on the back more than 220 years after their first discovery, making it possible to recover this primary source for the ongoing new edition of this precious book. SWIR HSI has produced better contrast and legibility even on the extensive text preserved on the front compared to former imaging of Herculaneum papyri at 950 nm (improperly called multispectral imaging), with a substantial impact on the text reconstruction. These promising results confirm the importance of advanced techniques applied to ancient carbonized papyri and open the way to a better investigation of hundreds of other such papyri.


2007 ◽  
Vol 7 (1) ◽  
pp. 15-30 ◽  
Author(s):  
D. Helmig ◽  
L. Ganzeveld ◽  
T. Butler ◽  
S. J. Oltmans

Abstract. Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone deposition to the snowpack possibly depends on parameters including the quantity and composition of deposited trace gases, solar irradiance, snow temperature and the substrate below the snowpack. Current literature spans a remarkably wide range of ozone deposition velocities (vdO3); several studies even reported positive ozone fluxes out of the snow. Overall, published values range from ~–3<vdO3<2 cm s−1, although most data are within 0<vdO3<0.2 cm s−1. This literature reveals a high uncertainty in the parameterization and the magnitude of ozone fluxes into (and possibly out of) snow-covered landscapes. In this study a chemistry and tracer transport model was applied to evaluate the applicability of the published vdO3 and to investigate the sensitivity of tropospheric ozone towards ozone deposition over Northern Hemisphere snow-covered land and sea-ice. Model calculations using increasing vdO3 of 0.0, 0.01, 0.05 and 0.10 cm s−1 resulted in general ozone sensitivities up to 20–30% in the Arctic surface layer, and of up to 130% local increases in selected Northern Latitude regions. The simulated ozone concentrations were compared with mean January ozone observations from 18 Arctic stations. Best agreement between the model and observations, not only in terms of absolute concentrations but also in the hourly ozone variability, was found by applying an ozone deposition velocity in the range of 0.00–0.01 cm s−1, which is smaller than most literature data and also significantly lower compared to the value of 0.05 cm s−1 that is commonly applied in large-scale atmospheric chemistry models. This sensitivity analysis demonstrates that large errors in the description of the wintertime tropospheric ozone budget stem from the uncertain magnitude of ozone deposition rates and the inability to properly parameterize ozone fluxes to snow-covered landscapes.


2014 ◽  
Vol 60 (220) ◽  
pp. 262-276 ◽  
Author(s):  
Matthew J. Beedle ◽  
Brian Menounos ◽  
Roger Wheate

AbstractWe estimate the glacier mass balance of a 9.5 km2 mountain glacier using three approaches for balance years 2009, 2010 and 2011. The photogrammetric, GPS and glaciological methods yielded sampling densities of 100, 5 and 2 points km-2, with measurement precisions of ± 0.40, ± 0.10 and ± 0.10 m w.e. respectively. Our glaciological measurements likely include a positive bias, due to omission of internal and basal mass balance, and uncertainty in determining the interface between snow and firn with a probe (±0.10 m w.e.). Measurements from our photogrammetric method include a negative bias introduced by the manual operator and our temperature index model used to correct for different dates of imaging (0.15 m w.e.), whereas GPS measurements avoid these biases. The photogrammetric and GPS methods are suitable for estimating glacier-wide annual mass balance, and thus provide a valuable measure that complements the glaciological method. These approaches, however, cannot be used to estimate mass balance at a point or mass-balance profiles without a detailed understanding of the vertical component of ice velocity.


Sign in / Sign up

Export Citation Format

Share Document