scholarly journals Pengembangan Populasi Mutan Penanda Aktivasi: I. Transformasi Padi Japonica Tropis Lokal Sulawesi cv. Asemandi dengan bantuan Agrobacterium tumefaciens

2016 ◽  
Vol 5 (2) ◽  
pp. 49
Author(s):  
Atmitri Sisharmini ◽  
Aniversari Apriana ◽  
Wening Enggraini ◽  
Kurniawan R. Trijatmiko

<p>The rice transformation technology<br />is not only provides valuable methods for the introduction<br />of useful genes into rice plant to improve important<br />agronomic traits, but also helps in studying gene function<br />and regulation based on rice genome sequence information.<br />Knockout of genes by insertional mutagenesis is a straightforward<br />method to identify gene functions. One of the<br />methods to develop rice mutants is through genetic transformation<br />mediated by Agrobacterium using activation<br />tagging by Ac-Ds system. A study was done with an objective<br />to obtain mutant rice of local tropical japonica cv. Asemandi<br />through genetic trans-formation mediated by Agrobacterium<br />tumefaciens. The transformation was conducted using<br />Agrobacterium vector with the strain of Agl-1 containing<br />activation tag construct. The result of experiment showed<br />that it has been obtained 17 independent line (304 plants)<br />transgenic Asemandi containing activation tag construct.<br />These starter lines will be used as materials to develop<br />several generations of stabil rice mutant through selfing.</p>

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Vijai Bhadauria ◽  
Sabine Banniza ◽  
Yangdou Wei ◽  
You-Liang Peng

Sequencing of over 40 fungal and oomycete genomes has been completed. The next major challenge in modern fungal/oomycete biology is now to translate this plethora of genome sequence information into biological functions. Reverse genetics has emerged as a seminal tool for functional genomics investigations. Techniques utilized for reverse genetics like targeted gene disruption/replacement, gene silencing, insertional mutagenesis, and targeting induced local lesions in genomes will contribute greatly to the understanding of gene function of fungal and oomycete pathogens. This paper provides an overview on high-throughput reverse genetics approaches to decode fungal/oomycete genomes.


2019 ◽  
Vol 26 (30) ◽  
pp. 5711-5726 ◽  
Author(s):  
Naveed Ahmed Khan ◽  
Ayaz Anwar ◽  
Ruqaiyyah Siddiqui

Background:First discovered in the early 1970s, Acanthamoeba keratitis has remained a major eye infection and presents a significant threat to the public health, especially in developing countries. The aim is to present a timely review of our current understanding of the advances made in this field in a comprehensible manner and includes novel concepts and provides clear directions for immediate research priorities.Methods:We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field.Results:The present review focuses on novel diagnostic and therapeutic strategies in details which can provide access to management and treatment of Acanthamoeba keratitis. This coupled with the recently available genome sequence information together with high throughput genomics technology and innovative approaches should stimulate interest in the rational design of preventative and therapeutic measures. Current treatment of Acanthamoeba keratitis is problematic and often leads to infection recurrence. Better understanding of diagnosis, pathogenesis, pathophysiology and therapeutic regimens, would lead to novel strategies in treatment and prophylaxis.


2006 ◽  
Vol 188 (6) ◽  
pp. 2063-2072 ◽  
Author(s):  
Preeti M. Tendolkar ◽  
Arto S. Baghdayan ◽  
Nathan Shankar

ABSTRACT Enterococci are opportunistic pathogens and among the leading causes of nosocomial infections. Enterococcus faecalis, the dominant species among infection-derived isolates, has recently been recognized as capable of forming biofilms on abiotic surfaces in vitro as well as on indwelling medical devices. A few bacterial factors known to contribute to biofilm formation in E. faecalis have been characterized. To identify additional factors which may be important to this process, we utilized a Tn917-based insertional mutagenesis strategy to generate a mutant bank in a high-biofilm-forming E. faecalis strain, E99. The resulting mutant bank was screened for mutants exhibiting a significantly reduced ability to form biofilms. One mutant, P101D12, which showed greater than 70% reduction in its ability to form biofilms compared to the wild-type parent, was further characterized. The single Tn917 insertion in P101D12 was mapped to a gene, bee-2, encoding a probable cell wall-anchored protein. Sequence information for the region flanking bee-2 revealed that this gene was a member of a locus (termed the bee locus for biofilm enhancer in enterococcus) comprised of five genes encoding three putative cell wall-anchored proteins and two probable sortases. Contour-clamped homogeneous electric field gel and Southern hybridization analyses suggested that the bee locus is likely harbored on a large conjugative plasmid. Filter mating assays using wild-type E99 or mutant P101D12 as a donor confirmed that the bee locus could transfer conjugally at high frequency to recipient E. faecalis strains. This represents the first instance of the identification of a mobile genetic element conferring biofilm-forming property in E. faecalis.


2020 ◽  
Author(s):  
dewei yang ◽  
Niqing He ◽  
Xianghua Zheng ◽  
Yanmei Zhen ◽  
Zhenxin Xie ◽  
...  

Abstract Background: Rice is a typical monocotyledonous plant and an important cereal crop. The structural units of rice flowers are spikelets and florets, and floral organ development and spike germination affect rice reproduction and yield.Results: In this study, we identified a novel long sterile lemma (lsl2) mutant from an EMS population. First, we mapped the lsl2 gene between the markers Indel7-22 and Indel7-27, which encompasses a 25-kb region. The rice genome annotation indicated the presence of four candidate genes in this region. Through gene prediction and cDNA sequencing, we confirmed that the target gene in the lsl2 mutant is allelic to LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY GLUME (ELE), hereafter referred to as lsl2. Further analysis of the lsl2 and LSL2 proteins showed a one-amino-acid change, namely, the mutation of serine (Ser) 79 to proline (Pro) in lsl2 compared with LSL2, and this mutation might change the function of the protein. Knockout experiments showed that the lsl2 gene is responsible for the long sterile lemma phenotype. The lsl2 gene might reduce the damage induced by spike germination by decreasing the seed germination rate, but other agronomic traits of rice were not changed in the lsl2 mutant. Taken together, our results demonstrate that the lsl2 gene will have specific application prospects in future rice breeding.Conclusions: The lsl2 gene is responsible for the long sterile lemma phenotype and might reduce the damage induced by spike germination by decreasing the seed germination rate.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4276-4283 ◽  
Author(s):  
Takashi Kunisawa

The class Clostridia in the phylum Firmicutes includes a very heterogeneous assemblage of bacteria. Their evolutionary relationships are not well established; revisions of their phylogenetic placements based on comparative studies of 16S rRNA gene sequences are in progress as genome sequence information accumulates. In this work, phylogenetic trees were reconstructed based on 21 concatenated ribosomal protein sequences using Bayesian and maximum-likelihood methods. Both trees consistently indicate that the Halanaerobiales is a deeply branching order among the class Clostridia. The rest of the Clostridia species are grouped into 10 monophyletic clusters, most of which are comprised of two or three orders and families according to the current Clostridial taxonomy. The maximum-likelihood tree placed Coprothermobacter proteolyticus and Thermodesulfobium narugense in the class Clostridia in accordance with the current taxonomy, in which these two bacteria are assigned to the family Thermodesulfobiaceae. However, the Bayesian tree placed these two bacteria at the boundary between the Firmicutes and Actinobacteria. A gene arrangement that is present uniquely in the Firmicutes species was identified. Both Coprothermobacter proteolyticus and Thermodesulfobium narugense do not have this arrangement characteristic of the Firmicutes. On the basis of the Bayesian tree and gene arrangement comparison, it is suggested that Coprothermobacter proteolyticus and Thermodesulfobium narugense should be placed outside the phylum Firmicutes.


2017 ◽  
Vol 5 (23) ◽  
Author(s):  
Urmi Halder ◽  
Aparna Banerjee ◽  
Vasvi Chaudhry ◽  
Rajeev K. Varshney ◽  
Shrikant Mantri ◽  
...  

ABSTRACT Here, we present the draft genome sequence of Bacillus altitudinis SORB11, which is tolerant to UV radiation. The strain was isolated from the Indian sector of the Southern Ocean at a depth of 3.8 km. The genome sequence information reported here for B. altitudinis SORB11 gives the basis of its UV resistance mechanism and provides data for further comparative studies with other bacteria resistant to UV radiation.


2007 ◽  
pp. 5-20 ◽  
Author(s):  
Takashi Matsumoto ◽  
Rod A. Wing ◽  
Bin Han ◽  
Takuji Sasaki

Sign in / Sign up

Export Citation Format

Share Document