Heavy mineral-based provenance analysis of Mesozoic continental-marine sediments at the western edge of the Bohemian Massif, SE Germany: with special reference to Fe–Ti minerals and the crystal morphology of heavy minerals

2010 ◽  
Vol 100 (7) ◽  
pp. 1497-1513 ◽  
Author(s):  
Harald G. Dill ◽  
Detlev Klosa
2021 ◽  
Vol 91 (6) ◽  
pp. 551-570
Author(s):  
Gabriella Obbágy ◽  
István Dunkl ◽  
Sándor Józsa ◽  
Lóránd Silye ◽  
Róbert Arató ◽  
...  

ABSTRACT Recent developments in geoanalytics have led to the rapidly increasing potential of sedimentary provenance analysis in paleogeographic reconstructions. Here we combine standard methods (petrography, zircon U-Pb geochronology, optical heavy-mineral identification) with modern techniques such as automated Raman-spectroscopic identification of heavy minerals and detrital apatite and titanite U-Pb geochronology. The resulting multi-parameter dataset enables the reconstruction of tectonic and paleogeographic environments to an as-yet unprecedented accuracy in space and time. The Paleogene siliciclastic formations of our study area, the Transylvanian Basin, represent an intensely changing sedimentary environment comprising three transgressive–regressive cycles on a simultaneously moving and rotating tectonic plate. We identified six major source components of the Paleogene sediments and outlined the paleo-drainage patterns for the three cycles, respectively. According to our data these components include: 1) pre-Variscan basement units of the nappes, 2) Variscan granitoids, 3) Permo-Triassic felsic volcanic rocks, 4) Jurassic ophiolites, 5) Upper Cretaceous granodiorites, and 6) Priabonian to Rupelian (37–30 Ma) intermediate magmatites, the latter representing newly recognized formations in the region. Abrupt paleographic changes can be directly deduced from the obtained dataset. The first phase of the Paleogene siliciclastic sequence is composed of mostly Southern Carpathian–derived sediments, to which Jurassic ophiolite detritus of the Apuseni Mts. was added during the second phase, while the siliciclastic material of the third phase represents mainly recycled material from the second phase. According to the detected diagnostic heavy-mineral associations, U-Pb age components and the positions of the potential source areas a set of provenance maps are presented.


2021 ◽  
Vol 61 (2) ◽  
pp. 688
Author(s):  
Stuart Munday ◽  
Anne Forbes ◽  
Brenton Fairey ◽  
Juliane Hennig-Breitfeld ◽  
Tim Breitfeld ◽  
...  

The Early Permian in the onshore Perth Basin has experienced several significant discoveries in the last 8 years. Beginning with the play-opening Waitsia discovery (AWE), this was followed more recently by the Beharra Springs Deep (Beach Energy) and West Erregulla (Strike) discoveries. In addition, Late Permian sands (Dongara and Wagina sandstones) have long been recognised as excellent reservoirs in the basin. This study attempts to better understand the provenance of the Early and Late Permian sediments using automated Raman spectroscopy as a tool to identify variations in heavy mineral assemblages. Automated Raman spectroscopy analysis of heavy minerals minimises operator bias inherent in more traditional optical heavy mineral analyses. These data are integrated with publicly available chemostratigraphy data to enable a better understanding of sediment provenance variations with stratigraphy. In addition, publicly available detrital zircon geochronological data are incorporated to help further understand sediment sources. A transect of wells is investigated, from Arrowsmith-1 in the southernmost extent to Depot Hill-1 and Mt Horner-1 in the north. While the elemental (chemostratigraphy) data suggest some changes in sediment provenance through the Permian of the Perth Basin, the Raman heavy mineral data confirm a number of sediment provenance changes both at key formational boundaries (e.g. top Kingia sandstone) and complex sediment provenance variation within reservoir sandstone units. These results are integrated to demonstrate how sediment provenance holds the key to understanding controls on variable reservoir quality as well as understanding the early infill in this basin.


1962 ◽  
Vol S7-IV (2) ◽  
pp. 264-272 ◽  
Author(s):  
Jean Demangeot ◽  
M. Ters

Abstract Heavy mineral analysis of samples from the Adriatic side of the Abruzzi mountains gives an indication of the age of the surface of the Gran Sasso plateaus and of the Quaternary continental formations. The absence of heavy minerals characteristic of the Pontian molasse suggests the possibility that the plateaus were never completely covered by the Pontian sea. The isolated molasse deposits which have been reported from the Gran Sasso may have been deposited in small gulfs along the shore of the sea. The Quaternary marine sediments have been dated by their fossil content. The majority of the Quaternary deposits, however, are gravels, breccias and eolian loams which contain neither fossils nor pollen. Cinder showers from Quaternary eruptions on the Tyrrhenian side of Abruzzi were carried by the wind and deposited volcanic minerals which were incorporated in the Quaternary material of the central Apennines. Heavy mineral analysis of the deposits containing these minerals reveals associations which provide a basis for determining the chronology of the Quaternary strata.


2019 ◽  
Vol 484 (1) ◽  
pp. 275-293 ◽  
Author(s):  
L. Caracciolo ◽  
S. Andò ◽  
P. Vermeesch ◽  
E. Garzanti ◽  
R. McCabe ◽  
...  

AbstractThis paper shows how heavy minerals and single-grain varietal studies can be conducted on silt (representing c. 50% of world's sediments) sediments to obtain quantitative data as efficiently as for sand-sized sediments. The analytical workflows include heavy mineral separation using a wide grain-size window (15–355 μ) analysed through integrated optical analysis, Raman spectroscopy, QEMSCAN microscopy and U–Pb dating of detrital zircon. Upper Jurassic–Cretaceous silt-sized sediments from the Mandawa Basin of central-southern Tanzania have been selected for the scope of this research. Raman-aided heavy mineral analysis reveals garnet and apatite to be the most common minerals together with durable zircon, tourmaline and subordinate rutile. Accessory but diagnostic phases are titanite, staurolite, epidote and monazite. Etch pits on garnet and cockscomb features on staurolite document the significant effect of diagenesis on the pristine heavy mineral assemblage. Multivariate statistical analysis highlights a close association among durable minerals (zircon, tourmaline and rutile, ZTR) while garnet and apatite plot alone reflecting independence between the three groups of variables with garnet increasing in Jurassic samples. Raman data for garnet end-member analysis document different associations between Jurassic (richer in A, Bi and Bii types) and Cretaceous (dominant A, Ci and Cii types) samples. U–Pb dating of detrital zircon and their statistical integration with the above-mentioned datasets provide further insights into changes in provenance and/or drainage systems. Metamorphic rocks of the early and late Pan-African orogeny terranes of the Mozambique Belt and those of the Irumide Belt acted as main source of sediment during the Jurassic. Cretaceous sediments record a broadening of the drainage system reaching as far as the Usagran–Ubendian Belt and the Tanzanian Archean Craton.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 273 ◽  
Author(s):  
Sergio Andò

The potential of heavy minerals studies in provenance analysis can be enhanced conspicuously by using a state-of-the-art protocol for sample preparation in the laboratory, which represents the first fundamental step of any geological research. The classical method of gravimetric separation is based on the properties of detrital minerals, principally their grain size and density, and its efficiency depends on the procedure followed and on the technical skills of the operator. Heavy-mineral studies in the past have been traditionally focused on the sand fraction, generally choosing a narrow grain-size window for analysis, an approach that is bound to introduce a serious bias by neglecting a large, and sometimes very large, part of the heavy-mineral spectrum present in the sample. In order to minimize bias, not only the largest possible size range in each sample should be considered, but also, the same quantitative analytical methods should be applied to the largest possible grain-size range occurring in the sediment system down to 5 μm or less, thus including suspended load in rivers, loess deposits, and shallow to deep-marine muds. Wherever the bulk sample cannot be used for practical reasons, we need to routinely analyze the medium silt to medium sand range (15–500 μm) for sand and the fine silt to sand range (5–63 or > 63 μm) for silt. This article is conceived as a practical handbook dedicated specifically to Master and PhD students at the beginning of their heavy-mineral apprenticeship, as to more expert operators from the industry and academy to help improving the quality of heavy-mineral separation for any possible field of application.


2021 ◽  
pp. 1-13
Author(s):  
Jasper Verhaegen ◽  
Hilmar von Eynatten ◽  
István Dunkl ◽  
Gert Jan Weltje

Abstract Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.


1980 ◽  
Vol 17 (2) ◽  
pp. 244-253
Author(s):  
John Edward Callahan

Stream sediments from a 13 000 km2 previously glaciated area in central Labrador near Churchill Falls were examined for their heavy mineral content. The minus 0.25 mm (60 mesh) nonmagnetic heavy mineral fraction from 846 stream sediment samples consists mainly of magnetite, ilmenite. garnet, hornblende, epidote and minor clinopyroxene, orthopyroxene. kyanite. sillimanite, biotite. apatite, and zircon. Changes in the frequency distribution of epidote, hornblende, garnet, and sillimanite in the stream sediments correspond well with those reported in previously mapped underlying bedrock lithologies. The occurrence of kyanite and sillimanite, high concentrations of garnet and opaques (mainly ilmenite), and lower concentrations of hornblende and epidote were used to determine grades of regional metamorphism, resulting in revision of the geologic map of this area. Heavy minerals in glacial drift or fluvial deposits may be useful as an aid in mapping in glaciated areas.


2020 ◽  
Vol 18 ◽  
pp. 63-73
Author(s):  
C. I. Adamu ◽  
E.E. Okon ◽  
D.O. Inyang

Active stream sediments generally consist of broken-down fragments of pre-existing rocks by the action of river (stream) flow. This makes them target materials for routine geochemical surveys and provenance analysis. Fifteen (15) stream sediment samples were collected in some parts of Bula and its environs, northeastern Nigeria, in order to determine their textural characteristics, heavy mineral and elemental composition. The sediments were subjected to granulometric, heavy mineral and elemental analyses. The result of granulometric analysis show that the streamsediments are poorly to moderately well sorted, very platykurtic to leptokurtic, fine to medium grained and positively skewed. Zircon, rutile and tourmaline are the dominant heavy mineral species occurring in the sediments. The computed Zircon-Tourmaline-Rutile (ZTR) index values for the samples range from 59.18 - 83.53, indicating mineralogical maturity. The geochemical data of the stream sediment samples show that the mean contents of the trace elements [Ti (0.73 ± 0.74%), Fe (0.39±0.19%), Cr (816±639ppm), Ni (258±108ppm), Pb (48±12.37ppm) and Zn (502±126ppm)] were higher than their respective average crustal values except for Fe. Computed threshold values indicate possible mineralization containing Fe and Ti. The elements have variable spatial distribution. The study shows that the trace elements composition of the stream sediments is majorly lithogenic. Because mineralization in rocks and sediments are often characterized by considerable variation in their trace elements contents, the metal concentrations in these sediments are large enough for Ilmenite and Rutile mineralization to be suspected within the study area.


GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 77-102 ◽  
Author(s):  
Mahbub Hussain ◽  
Lameed O. Babalola ◽  
Mustafa M. Hariri

ABSTRACT The Wajid Sandstone (Ordovician-Permian) as exposed along the road-cut sections of the Abha and Khamis Mushayt areas in southwestern Saudi Arabia, is a mediun to coarse-grained, mineralogically mature quartz arenite with an average quartz content of over 95%. Monocrystalline quartz is the dominant framework grain followed by polycrystalline quartz, feldspar and micas. The non-opaque heavy mineral assemblage of the sandstone is dominated by zircon, tourmaline and rutile (ZTR). Additional heavy minerals, constituting a very minor fraction of the heavies, include epidote, hornblende, and kyanite. Statistical analysis showed significant correlations between zircon, tourmaline, rutile, epidote and hornblende. Principal component R-mode varimax factor analysis of the heavy mineral distribution data shows two strong associations: (1) tourmaline, zircon, rutile, and (2) epidote and hornblende suggesting several likely provenances including igneous, recycled sedimentary and metamorphic rocks. However, an abundance of the ZTR minerals favors a recycled sedimentary source over other possibilities. Mineralogical maturity coupled with characteristic heavy mineral associations, consistent north-directed paleoflow evidence, and the tectonic evolutionary history of the region indicate a provenance south of the study area. The most likely provenances of the lower part (Dibsiyah and Khusayyan members) of the Wajid Sandstone are the Neoproterozoic Afif, Abas, Al-Bayda, Al-Mahfid, and Al-Mukalla terranes, and older recycled sediments of the infra-Cambrian Ghabar Group in Yemen to the south. Because Neoproterozic (650-542 Ma) rocks are not widespread in Somalia, Eritrea and Ethiopia, a significant source further to the south is not likely. The dominance of the ultrastable minerals zircon, tourmaline and rutile and apparent absence of metastable, labile minerals in the heavy mineral suite preclude the exposed arc-derived oceanic terrains of the Arabian Shield in the west and north as a significant contributor of the sandstone. An abundance of finer-grained siliciclastic sequences of the same age in the north, is consistent with a northerly transport direction and the existence of a deeper basin (Tabuk Basin?) to the north. The tectonic and depositional model presented in this paper differs from the existing model that envisages sediment transportation and gradual basin filling from west to east during the Paleozoic.


Sign in / Sign up

Export Citation Format

Share Document