scholarly journals Abstract P-47: Analysis of Phosphorus Distribution in Giant Bacteriophage Capsid by Electron Energy Loss Spectroscopy

2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S33-S33
Author(s):  
Tatiana Trifonova ◽  
Andrey Moiseenko ◽  
Olga Shaburova ◽  
Maria Bourkaltseva ◽  
Viktor Krylov ◽  
...  

Background: We have recently developed a method to visualize the distribution of DNA in the cytoplasm of bacteria by analytical electron microscopy (EM), using the Phosphorus signal (dsDNA contains two phosphate groups per each nucleotide pair), that was detected and mapped onto the image of the cell (Danilova et al, 2020; Loiko et al, 2020). Here we applied this technique to study much smaller objects – the DNA packing inside bacteriophage heads. We studied phiEL, giant phiKZ-like bacteriophage of the Myoviridae family that infects Pseudomonas aeruginosa (Krylov et al, 2003). We have earlier demonstrated that this phage contains an ‘inner body’ inside its capsid, which is responsible for the specific DNA packing (Sokolova et al, 2014). Methods: The phage propagation was performed as described before (Sokolova et al, 2014). A 3 ul sample of purified bacteriophage phiEL was applied to the glow-discharged carbon-coated copper grid and stained with freshly prepared ammonium Molybdate 2% aquatic solution for 30 sec. Grids were loaded into Gatan cooling holder and the temperature of the specimen was kept at -180°C. EELS spectra and phosphorus elemental maps were obtained on JEOL2100 microscope, operating at 200 kV with the Gatan GIF Quantum ER spectrometer in STEM mode. Pixel size was set to 15-20 nm. STEM drift correction was applied after each 40-50 pixels. Each spectrum was obtained at a 6.0 mrad collection angle, 0.25 eV dispersion, and 132 eV energy shift. The spectra from different pixels were aligned to carbon K-edge. Results: Phosphorus mapping inside and outside the bacteriophage capsid was performed (Fig. 1). Outside the capsid, the phosphorus signal was practically absent, which corresponds to the presence of DNA only inside the capsid. The distribution of phosphorus inside the capsid was uneven: the rectangular area in the middle of the capsid contained a weak signal, while a more intense signal was detected on the periphery. This can be explained by the presence of an ‘inner body’ inside (Fig. 1C). Conclusion: Thus, our results justify the possibility of using the analytical EM technique to study the distribution of DNA by mapping Phosphorus in biological nano-objects at relatively low content of the element.

2003 ◽  
Vol 788 ◽  
Author(s):  
Vladimir P. Oleshko ◽  
James M. Howe ◽  
Satyajit Shukla ◽  
Sudipta Seal

ABSTRACTThe mechanisms underlying stabilization of the metastable tetragonal (t)-phase in sol-gel derived, nanocrystalline ZrO2 were studied by high-resolution analytical electron microscopy, utilizing parallel electron-energy loss (PEEL) and energy-dispersive X-ray spectroscopies. The powders were synthesized by hydrolysis of Zr (IV) n-propoxide at ratios of molar concentration of water to Zr n-propoxide, R=5 and 60, respectively, followed by calcination at 400°C. Dense particles of the as-precipitated ZrO2 (R=5) revealed 4–11 nm-sized nanocrystals embedded in the amorphous matrix that may serve as nuclei for the t-phase during calcination. The calcined particles consist of 10–100 nm–sized t-crystals. For as-precipitated ZrO2 (R=60), week aggregates (50–100 nm) of largely amorphous 4–20 nm-sized particles after calcination yield a mixture of t-and monoclinic (m-) nanocrystals. PEELS fingerprints of the band structure with the intensity threshold matching the expected position of a direct bandgap at 4–5 eV allow to differentiate between the amorphous and nanocrystalline ZrO2. Stabilization of t-phase (R=5) with sizes up to 16 times larger than reported earlier is likely due to strain-induced confinement from surrounding growing grains, which suppress the volume expansion associated with the martensitic t-m transformation. For R=60, loose nanoparticle agglomerates cannot suppress the transformation. In this case, the t-phase may be partially stabilized due to a crystal size effect and /or to the presence of m-phase.


1997 ◽  
Vol 3 (S2) ◽  
pp. 533-534 ◽  
Author(s):  
J. Bentley

For more than 20 years interfacial segregation has been studied by analytical electron microscopy (AEM). Two recent commercial developments should allow more widespread application of 1 nm resolution AEM studies of interfacial segregation. The first is a system for integrated acquisition that in its most sophisticated form allows spectrum imaging [a full spectrum recorded at every pixel of an image (e.g. STEM)] for simultaneous multiple spectroscopies (e.g., EDS and PEELS). A field emission gun (FEG) is necessary for sufficient sensitivity at high spatial resolution. The second commercial development has been imaging energy filters that allow the production of elemental maps from a series of energy-filtered TEM (EFTEM) images at inner shell ionization edges. Resolutions of ∼1 nm can be achieved without an FEG, but analysis is limited to the electron energy-loss signal. Although complex microstructures may require full two-dimensional mapping, for many planar interfaces a one-dimensional profile of composition or chemistry normal to the interface plane is sufficient.


2011 ◽  
Vol 1329 ◽  
Author(s):  
N. Peranio ◽  
Z. Aabdin ◽  
W. Töllner ◽  
M. Winkler ◽  
J. König ◽  
...  

ABSTRACTEnergy-filtered transmission electron microscopy (EFTEM) yields new possibilities for the investigation of Bi2Te3 based nanomaterials. Combined low-loss electron energy-loss spectroscopy (EELS) and energy-dispersive x-ray microanalysis (EDS) and energy-filtered TEM were applied on a Zeiss 912Ω TEM to investigate nanowires, thin films, and bulk materials. Multilayered Bi-Sb-Te nanowires with a diameter of 65 nm and a period of 200 nm and stoichiometric Bi2Te3 nanowires were grown by potential-pulsed electrochemical deposition. Tellurium elemental maps of the multilayered nanowires were obtained by two-window edge-jump ratio images (EJI). EDS chemical analysis showed that small Te fluctuations of 3 at.% yielded significant contrast in EJI. Energy-filtered TEM applied on nano-alloyed Bi2Te3 thin films grown by molecular beam epitaxy (MBE) revealed 10-20 nm thick Bi-rich blocking layers at grain boundaries. Plasmon spectroscopy by EELS was applied on Bi2(Te0.91Se0.09)3 bulk and yielded a plasmon energy of 16.9 eV. Finally, plasmon dispersion was measured for Bi2(Te0.91Se0.09)3 bulk by angle-resolved EELS, which yields a fingerprint of the anisotropy and the dimensionality of the electronic structure of the materials.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
P. Ingram

It is well established that unique physiological information can be obtained by rapidly freezing cells in various functional states and analyzing the cell element content and distribution by electron probe x-ray microanalysis. (The other techniques of microanalysis that are amenable to imaging, such as electron energy loss spectroscopy, secondary ion mass spectroscopy, particle induced x-ray emission etc., are not addressed in this tutorial.) However, the usual processes of data acquisition are labor intensive and lengthy, requiring that x-ray counts be collected from individually selected regions of each cell in question and that data analysis be performed subsequent to data collection. A judicious combination of quantitative elemental maps and static raster probes adds not only an additional overall perception of what is occurring during a particular biological manipulation or event, but substantially increases data productivity. Recent advances in microcomputer instrumentation and software have made readily feasible the acquisition and processing of digital quantitative x-ray maps of one to several cells.


Author(s):  
Jian-Shing Luo ◽  
Chia-Chi Huang ◽  
Jeremy D. Russell

Abstract Electron tomography includes four main steps: tomography data acquisition, image processing, 3D reconstruction, and visualization. After acquisition, tilt-series alignments are performed. Two methods are used to align the tilt-series: cross-correlation and feature tracking. Normally, about 10-20 nm of fiducial markers, such as gold beads, are deposited onto one side of 100 mesh carbon-coated grids during the feature-tracking process. This paper presents a novel method for preparing electron tomography samples with gold beads inside to improve the feature tracking process and quality of 3D reconstruction. Results show that the novel electron tomography sample preparation method improves image alignment, which is essential for successful tomography in many contemporary semiconductor device structures.


1999 ◽  
Vol 5 (S2) ◽  
pp. 664-665
Author(s):  
A.J. Craven ◽  
M. MacKenzie

The performance of many materials systems depends on our ability to control the distribution of atoms on a nanometre or sub-nanometre scale within those systems. This is as true for steels as it is for semiconductors. A key requirement for improving their performance is the ability to determine the distribution of the elements resulting from processing the material under a given set of conditions. Analytical electron microscopy (AEM) provides a range of powerful techniques with which to investigate this distribution. By combining information from different techniques, many of the ambiguities of interpretation of the data from an individual technique can be eliminated. The electron energy loss near edge structure (ELNES) present on an ionisation edge in the electron energy loss spectrum reflects the local structural and chemical environments in which the particular atomic species occurs. Thus it is a useful contribution to the information available. Since a similar local environment frequently results in a similar shape, ELNES is useful as a “fingerprint”.


2009 ◽  
Vol 16 (02) ◽  
pp. 249-258 ◽  
Author(s):  
V. A. TINKOV ◽  
M. A. VASYLYEV

Electron energy loss spectroscopy has been used for the investigation of the surface and bulk plasmon excitations depending on the heating in the ultra-thin layers of ordering Pt 80 Co 20(111) alloy from the primary electron beam energies E0 ranging from 200 to 650 eV. Thermo-induced shift of plasmon energy and damping of intensity line of the surface plasmon relative to the bulk plasmon were observed. With an increase in alloy heating, the energy of surface and bulk plasmons is shifted with lowering energy in the whole range E0 and the higher the temperature the higher the shifts of plasmon energy. The physical processes that can influence on the energy shift of plasmon oscillations in the energy loss spectra at heating are considered. The relationship between the damping of oscillating concentration depth profile and the surface plasmon damping at heating was established.


2021 ◽  
Author(s):  
Yuri Mikhlin ◽  
Roman Borisov ◽  
Sergey Vorobyev ◽  
Yevgeny Tomashevich ◽  
Alexander Romanchenko ◽  
...  

Two-dimensional phenomena are attracting enormous interest at present and the search for novel 2D materials is very challenging. We propose here the layered material valleriite composed of altering atomic sheets of Cu-Fe sulfide and Mg-based hydroxide synthesized via a simple hydrothermal pathway as particles of 50-200 nm in the lateral size and 10-20 nm thick. The solid products and aqueous colloids prepared with various precursor ratios were examined using XRD, TEM, EDS, X-ray photoelectron spectroscopy (XPS), reflection electron energy loss spectroscopy (REELS), Raman, Mössbauer, UV-vis-NIR spectroscopies, magnetic, dynamic light scattering, zeta potential measurements. The material properties are largely determined by the narrow-gap (less than 0.5 eV) sulfide layers containing Cu+ and Fe3+ cations, monosulfide and minor polysulfide anions but are strongly affected by the hydroxide counterparts. Particularly, Fe distribution between sulfide (55-90%) and magnesium hydroxide layers is controlled through insertion of Al into the hydroxide part and by Cr and Co dopants entering both layers. Room-temperature Mössbauer signals of paramagnetic Fe3+ transformed to several Zeeman sextets with hyperfine magnetic fields up to 500 kOe in the sulfide layers at 4 K. Paramagnetic or more complicated characters were observed for valleriites with higher and lower Fe concentrations in hydroxide sheets, respectively. Valleriite colloids showed negative zeta potentials, suggesting negative electric charging of the hydroxide sheets, and optical absorption maxima between 500 nm and 700 nm, also depended on the Fe distribution. The last features observed also in the REELS spectra may be due to localized surface plasmon or, more likely, quasi-static dielectric resonance. The tunable composition, electronic, magnetic, optic and surface properties highlight valleriites as a rich platform for novel 2D composites promising for numerous applications.


1999 ◽  
Vol 589 ◽  
Author(s):  
J. Bentley ◽  
K.C. Walter ◽  
N.D. Evans

AbstractIon-implanted diamond-like carbon (DLC) films have been characterized by techniques based on electron energy-loss spectrometry using an imaging energy filter on a 300kV TEM. Nitrogen implantation results in increased sp2 bonding and a 1.3 eV shift to higher binding energies for carbon-K. Argon implantation results in a smaller increase in sp2bonding with no detectable binding energy shift. The fraction of implanted species retained is much smaller for Ar than for N. Differences in behavior between N- and Ar-implanted DLC are consistent with expected chemical reactions. Preliminary results demonstrate the feasibility of mapping the Φ*/σ* intensity (sp2/sp3) ratio by energy-filtered TEM as an alternative to spectrum imaging in STEM mode


Sign in / Sign up

Export Citation Format

Share Document