scholarly journals Turbo-Expander Units on Low Boiling Working Fluids

Author(s):  
A. V. Ovsyannik ◽  
V. P. Kliuchinski

The article examines the possibility of increasing the efficiency of the turbo-expander cycles on low-boiling working fluids using those methods that are used for steam turbines, viz. increasing the parameters of the working fluid before the turbo-expander and using secondary overheating. Thus, four schemes of the turbo-expander cycle are considered: the one without overheating of the low-boiling working fluid, the one with single overheating of low-boiling fluid, the one with double overheating and the one with double overheating at supercritical parameters. All the studied cycles were considered with a heat exchanger at the outlet of the turbo expander, designed to heat the condensate of a low-boiling working fluid formed in the condenser of the turbo expander unit. Cycles in P–h coordinates were built for the studied schemes. The method of thermodynamic analysis of the studied cycles based on the exergetic efficiency has been developed. The results of the research are presented in the form of Grassman-Shargut diagrams, which show exergy losses in the elements of the studied cycles on a scale, and also show the positive effect of the operation of the turbo-expander cycle in the form of electrical power. The analysis of the obtained results showed that the main losses that have a significant impact on the exergy efficiency are the losses of exergy in the recovery boiler. The increase of parameters of low-boiling working body, and the use of intermediate superheating reduce losses in the waste heat boiler and, consequently, increases exergetic efficiency of turbo-expander cycle. The turbo-expander cycle with double overheating at supercritical parameters of the low-boiling fluid is of the largest exergetic efficiency out of the schemes that have been examined.

Author(s):  
A. V. Ovsyannik ◽  
V. P. Kliuchinski

The paper presents a thermodynamic analysis of secondary overheating in turbo-expander plants on low-boiling working fluids. The possibility of optimizing the parameters of the working fluid in a secondary stem superheater has been studied. The research was carried out for two typical turbo-expander cycles: with a heat exchanger at the outlet of the turbo-expander, intended for cooling an overheated low-boiling working fluid, and without a heat exchanger. Cycles in T–s coordinates were constructed for the studied schemes. The influence of pressure and temperature in the intermediate superheater on the exergetic efficiency of the turbo-expander unit was studied. Thus, the dependences of the exergetic efficiency and losses on the elements of the turbo-expander cycle are obtained when the temperature of the working fluid changes and pressure of the working fluid not changes in the intermediate superheater, and when the pressure changes and the temperature does not change. As a low-boiling working fluid, the ozone-safe freon R236EA is considered, which has a “dry” saturation line characteristic, zero ozone layer destruction potential, and a global warming potential equal to 1370. It has been determined that increasing the parameters of the low-boiling working fluid in front of the low-pressure turbo expander (regardless of the scheme of the turbo expander cycle) does not always cause an increase in the exergetic efficiency. Thus, overheating of the working fluid at a pressure exceeding the critical pressure causes a positive exergetic effect, but for each temperature there is an optimal pressure at which the efficiency will be maximum. At a pressure below the critical pressure, overheating leads to a decrease in the exergetic efficiency, and the maximum exergetic effect is achieved in the absence of a secondary steam superheater. All other things being equal, a turbo-expander cycle with a heat exchanger is more efficient than without it over the entire temperature range and pressure of the low-boiling working fluid under study.


1970 ◽  
Author(s):  
Stephen Luchter

Gas-turbine waste heat appears to be a valuable source of energy, yet the number of installations in which this energy is utilized is minimal. The reasons for this are reviewed and a typical nonafterburning cycle is examined for both steam and an “organic” working fluid. The power level range over which each is attractive is obtained, and the costs of each are compared on a relative basis.


Author(s):  
Ahmad K. Sleiti ◽  
Mohammed Al-Khawaja

Abstract Refrigeration systems contribute to the critical environmental concerns including global warming and ozone depletion. It is necessary to develop new systems that use renewable energy resources and waste heat to perform the cooling function with eco-friendly working fluids. This improves the energy efficiency of the power systems and minimizes the harmful effects of conventional refrigeration systems. This paper introduces an analysis of a regenerative thermo-mechanical refrigeration system that is powered with renewable heat sources (solar, geothermal) or waste heat (from internal combustion engines, gas power plants, and steam power plants). The system operates at the supercritical conditions of the working fluids. The performance of the system is evaluated based on power efficiency, the COP, and the expander-compressor diameters. Also, a number of working fluids were compared with each other based on their performance and environmental effects. There is a trade-off between high-performance fluids and their environmental effects. Using R32 as a working fluid at Th = 150 °C and Tc1 = 40 °C, the system produces a cooling capacity of 1 kW with power efficiency of 10.23%, expander diameter of 53.12 mm and compressor diameter of 75.4mm. The regenerator increases the power efficiency by about 1%. However, the size of the regenerator is small (Dr = 6.5 mm, Lr = 142 mm].


Author(s):  
Maximilian Roedder ◽  
Matthias Neef ◽  
Christoph Laux ◽  
Klaus-P. Priebe

The organic Rankine cycle (ORC) is an established thermodynamic process that converts waste heat to electric energy. Due to the wide range of organic working fluids available the fluid selection adds an additional degree-of-freedom to the early design phase of an ORC process. Despite thermodynamic aspects such as the temperature level of the heat source, other technical, economic, and safety aspects have to be considered. For the fluid selection process in this paper, 22 criteria were identified in six main categories while distinguishing between elimination (EC) and tolerance criteria (TC). For an ORC design, the suggested method follows a practical engineering approach and can be used as a structured way to limit the number of interesting working fluids before starting a detailed performance analysis of the most promising candidates. For the first time, the selection process is applied to a two-stage reference cycle, which uses the waste heat of a large reciprocating engine for cogeneration power plants. It consists of a high temperature (HT) and a low temperature (LT) cycle in which the condensation heat of the HT cycle provides the heat input of the LT cycle. After the fluid selection process, the detailed thermodynamic cycle design is carried out with a thermodynamic design tool that also includes a database for organic working fluids. The investigated ORC cycle shows a net thermal efficiency of about 17.4% in the HT cycle with toluene as the working fluid and 6.2% in LT cycle with isobutane as the working fluid. The electric efficiency of the cogeneration plant increases from 40.4% to 46.97% with the both stages of the two-stage ORC in operation.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1830
Author(s):  
Zhijian Wang ◽  
Hua Tian ◽  
Lingfeng Shi ◽  
Gequn Shu ◽  
Xianghua Kong ◽  
...  

Engines waste a major part of their fuel energy in the jacket water and exhaust gas. Transcritical Rankine cycles are a promising technology to recover the waste heat efficiently. The working fluid selection seems to be a key factor that determines the system performances. However, most of the studies are mainly devoted to compare their thermodynamic performances of various fluids and to decide what kind of properties the best-working fluid shows. In this work, an active working fluid selection instruction is proposed to deal with the temperature match between the bottoming system and cold source. The characters of ideal working fluids are summarized firstly when the temperature match method of a pinch analysis is combined. Various selected fluids are compared in thermodynamic and economic performances to verify the fluid selection instruction. It is found that when the ratio of the average specific heat in the heat transfer zone of exhaust gas to the average specific heat in the heat transfer zone of jacket water becomes higher, the irreversibility loss between the working fluid and cold source is improved. The ethanol shows the highest net power output of 25.52 kW and lowest electricity production cost of $1.97/(kWh) among candidate working fluids.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Saeb M. Besarati ◽  
D. Yogi Goswami

A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose; however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO2 Brayton cycle, a recompression S-CO2 Brayton cycle, and a partial cooling S-CO2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.


1979 ◽  
Author(s):  
W. F. Malewski ◽  
G. M. Holldorff

Combined cycles for pipeline-booster stations using waste heat from gas turbines exhaust can improve the overall efficiency of such stations remarkably. Several working fluids are suitable. Due to existing criteria for selecting a working medium under mentioned conditions, water, ammonia, propane and butane can be considered as practical working fluids. The investigations have shown that: (a) ammonia is advantageous at low exhaust gas and ambient temperatures, (b) water is most effective at high exhaust gas and ambient temperatures, and (c), additionally, hydrocarbons are suitable in a medium range for exhaust gas and condensing temperatures. Not only thermodynamic but also operational features have to be considered. There is not one optimum working fluid but a best one suitable according to the prevailing site conditions.


2020 ◽  
pp. 1-27
Author(s):  
Ahmad K. Sleiti ◽  
Wahib Al-Ammari ◽  
Mohammed Al-Khawaja

Abstract Refrigerants of the conventional cooling systems contribute to global warming and ozone depletion significantly, therefore it is necessary to develop new cooling systems that use renewable energy resources and waste heat to perform the cooling function with eco-friendly working fluids. To address this, the present study introduces and analyzes a novel regenerative thermo-mechanical refrigeration system that can be powered by renewable heat sources (solar, geothermal, or waste heat). The system consists of a novel expander-compressor unit (ECU) integrated with a vapor compression refrigeration system. The integrated system operates at the higher-performance supercritical conditions of the working fluids as opposed to the lower-performance subcritical conditions. The performance of the system is evaluated based on several indicators including the power loop efficiency, the coefficient of performance (COP) of the cooling loop, and the expander-compressor diameters. Several working fluids were selected and compared for their suitability based on their performance and environmental effects. It was found that for heat source temperature below 100 °C, adding the regenerator to the system has no benefit. However, the regenerator increases the power efficiency by about 1 % for a heat source temperature above 130 °C. This was achieved with a very small size regenerator (Dr = 6.5 mm, Lr = 142 mm). Results show that there is a trade-off between high-performance fluids and their environmental effects. Using R32 as a working fluid at heat source temperature Th=150 °C and cold temperature Tc1=40 °C, the system produces a cooling capacity of 1 kW with power efficiency of 10.23 %, expander diameter of 53.12 mm, and compressor diameter of 75.4mm.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 480 ◽  
Author(s):  
Gábor Györke ◽  
Axel Groniewsky ◽  
Attila Imre

One of the most crucial challenges of sustainable development is the use of low-temperature heat sources (60–200 °C), such as thermal solar, geothermal, biomass, or waste heat, for electricity production. Since conventional water-based thermodynamic cycles are not suitable in this temperature range or at least operate with very low efficiency, other working fluids need to be applied. Organic Rankine Cycle (ORC) uses organic working fluids, which results in higher thermal efficiency for low-temperature heat sources. Traditionally, new working fluids are found using a trial-and-error procedure through experience among chemically similar materials. This approach, however, carries a high risk of excluding the ideal working fluid. Therefore, a new method and a simple rule of thumb—based on a correlation related to molar isochoric specific heat capacity of saturated vapor states—were developed. With the application of this thumb rule, novel isentropic and dry working fluids can be found applicable for given low-temperature heat sources. Additionally, the importance of molar quantities—usually ignored by energy engineers—was demonstrated.


2020 ◽  
Vol 168 ◽  
pp. 00048
Author(s):  
Mykhailo Kirsanov ◽  
Inna Diakun ◽  
Vitalii Ruban ◽  
Viktor Skosyriev ◽  
Oleksandr Zhevzhyk

Increase of operating efficiency of mine energy complexes is an actual scientific and technical problem. Systems that utilize energy of low-potential sources and have freon-steam turbines are suggested to be included in mine energy complexes. Principles of selection of freons as working fluids in energy systems are suggested in the paper. Usage of some thermal equations of state for defining thermal and physical properties of freons is analyzed. Equation of isentropic process for the thermal Redlich–Kwong equation of state is obtained. Calculation of energy efficiency of a system with a freon-steam turbine for selected variants of usage of working fluids is performed. A calculation method of thermodynamic parameters that are necessary for energy conversion efficiency estimation of specific freons in a system of useful utilization of energy is developed. Analysis of results indicates that usage of ozone-safe and fire-safe freons in energy utilization systems of low-potential sources with a possibility of utilization of additional waste heat, which was not used in the past, allows increasing the operating efficiency of mine energy complexes.


Sign in / Sign up

Export Citation Format

Share Document