scholarly journals Seasonal Study for Habitat of Myriophyllum spicatum L. in Al-Burgga Marsh, Hor Al-Hammar, Southern Iraq

2014 ◽  
Vol 11 (3) ◽  
pp. 1145-1154
Author(s):  
Baghdad Science Journal

Myriophyllum spicatum distribution in Al-Burgga marsh, Hor Al-Hammar was described in relation to some of the physical-chemical properties for its habitat (water depth, light penetration, water temperature, water salinity, pH, dissolved oxygen, Ca+2, Mg+2, reactive NO2=, reactive NO3-1, and reactive PO4-3) during 2011, seasonally. CANOCO ordination program (CCA) was used to analyse the data. Its vegetation cover percentage was with its peak at summer, its value was 90 %, while the lowest value was 20 % in winter. Statistically, Positive relationships for WT, sal., Ca+2, Mg+2, reactive NO2=, reactive NO3-1, and reactive PO4-3 with the vegetation cover percentage were observed. While, negative relationships for WD, pH, and DO with the vegetation cover percentage were observed. Also, the negative relationship between light penetration and the vegetation cover percentage can be attributed to the water depth, which was shallow and the light penetration followed water depth and reached to the bottom during all of the period study. In addition, two species were registered with Myriophyllum spicatum community as associated species, which are Hydrilla verticillata and Ceratophyllum demersum.

2021 ◽  
Author(s):  
Christopher Mudge ◽  
Kurt Getsinger

Herbicide selection is key to efficiently managing nuisance vegetation in our nation’s waterways. After selecting the active ingredient, there still remains multiple proprietary and generic products to choose from. Recent small-scale research has been conducted to compare the efficacy of these herbicides against floating and emergent species. Therefore, a series of mesocosm and growth chamber trials were conducted to evaluate subsurface applications of the following herbicides against submersed plants: diquat versus coontail (Ceratophyllum demersum L.), hydrilla (Hydrilla verticillata L.f. Royle), southern naiad (Najas guadalupensis (Sprengel) Magnus), and Eurasian watermilfoil (Myriophyllum spicatum L.); flumioxazin versus coontail, hydrilla, and Eurasian watermilfoil; and triclopyr against Eurasian watermilfoil. All active ingredients were applied at concentrations commonly used to manage these species in public waters. Visually, all herbicides within a particular active ingredient performed similarly with regard to the onset and severity of injury symptoms throughout the trials. All trials, except diquat versus Eurasian watermilfoil, resulted in no differences in efficacy among the 14 proprietary and generic herbicides tested, and all herbicides provided 43%–100% control, regardless of active ingredient and trial. Under mesocosm and growth chamber conditions, the majority of the generic and proprietary herbicides evaluated against submersed plants provided similar control.


2013 ◽  
Vol 6 (2) ◽  
pp. 320-325 ◽  
Author(s):  
Matthew A. Barnes ◽  
Christopher L. Jerde ◽  
Doug Keller ◽  
W. Lindsay Chadderton ◽  
Jennifer G. Howeth ◽  
...  

AbstractDesiccation following prolonged air exposure challenges survival of aquatic plants during droughts, water drawdowns, and overland dispersal. To improve predictions of plant response to air exposure, we observed the viability of vegetative fragments of 10 aquatic plant species (Cabomba caroliniana, Ceratophyllum demersum, Elodea canadensis, Egeria densa, Myriophyllum aquaticum, Myriophyllum heterophyllum, Myriophyllum spicatum, Potamogeton crispus, Potamogeton richardsonii, and Hydrilla verticillata) following desiccation. We recorded mass loss, desiccation rate, and plant fragment survival across a range of air exposures. Mass loss accurately predicted viability of aquatic plant fragments upon reintroduction to water. However, similar periods of air exposure differentially affected viability between species. Understanding viability following desiccation can contribute to predicting dispersal, improving eradication protocols, and disposing of aquatic plants following removal from invaded lakes or contaminated equipment.


Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


Author(s):  
Wojciech Ejankowski ◽  
Tomasz Lenard

<p>The physicochemical parameters of water, the concentration of chlorophyll-<em>a</em> and the submerged aquatic vegetation (SAV) were studied to evaluate the effects of different winter seasons on the biomass of macrophytes in shallow eutrophic lakes. We hypothesised that a lack of ice cover or early ice-out can influence the physicochemical parameters of water and thus change the conditions for the development of phytoplankton and SAV. The studies were conducted in four lakes of the Western Polesie region in mid-eastern Poland after mild winters with early ice-out (MW, 2011 and 2014) and after cold winters with late ice-out (CW, 2010, 2012 and 2013). The concentrations of soluble and total nitrogen, chlorophyll-<em>a</em> and the TN:TP ratio in the lakes were considerably higher, whereas the concentration of soluble and total phosphorus and water transparency were significantly lower after the MW compared with after the CW. No differences were found in water temperature, reaction and electrolytic conductivity. Low water turbidity linked with low concentration of chlorophyll-<em>a</em> after the CW resulted in increased water transparency and the total biomass of the SAV. The negative effect of the MW on the macrophyte species was stronger on more sensitive species (<em>Myriophyllum spicatum</em>,<em> Stratiotes aloides</em>) compared with shade tolerant <em>Ceratophyllum demersum</em>. Our findings show that the ice cover phenology affected by climate warming can change the balance between phytoplankton and benthic vegetation in shallow eutrophic lakes, acting as a shift between clear and turbid water states. We speculate that various responses of macrophyte species to changes in the water quality after two winter seasons (CW and MW) could cause alterations in the vegetation biomass, particularly the expansion of shade tolerance and the decline of light-demanding species after a series of mild winters.</p>


Author(s):  
Dian Li ◽  
Linglei Zhang ◽  
Min Chen ◽  
Xiaojia He ◽  
Jia Li ◽  
...  

Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle, two pioneer, submerged plants, effectively remove heavy metals from contaminated water. The present work evaluates the bioaccumulation and defense mechanisms of these plants in the accumulation of lead from contaminated water during their optimal performance period. C. demersum and H. verticillata were investigated after 14 days of exposure to various lead concentrations (5–80 μM). The lead accumulation in both C. demersum and H. verticillata increased with an increasing lead concentration, reaching maximum values of 2462.7 and 1792 mg kg−1 dw, respectively, at 80 μM. The biomass and protein content decreased significantly in C. demersum when exposed to lead. The biomass of H. verticillata exposed to lead had no significant difference from that of the controls, and the protein content increased for the 5–10 μM exposure groups. The malondialdehyde (MDA) content and superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities were much higher in C. demersum, suggesting considerable damage from lipid peroxidation and sensitivity to lead stress. Enzyme inhibition and inactivation were also observed in C. demersum at high lead concentrations (40–80 μM). The excellent growth status, low damage from lipid peroxidation, and high activity of catalase (CAT) and phenylalanine ammonia-lyase (PAL) observed in H. verticillata illustrate its better tolerance under the same lead stress.


Author(s):  
S. Bunluesin ◽  
M. Kruatrachue ◽  
P. Pokethitiyook ◽  
G. R. Lanza ◽  
E. S. Upatham ◽  
...  

2020 ◽  
Vol 6 (6(75)) ◽  
pp. 26-30
Author(s):  
S. A. Hunanyan ◽  
T. A. Jhangiryan ◽  
A. L. Mkrtchyan

Upon the investigations the contamination rate of soil and vegetation cover of the basin at river Debed and the impact of technogenesis on the agro-chemical properties of soil and yield capacity of agricultural crops has been identified. It has been found out that the content of heavy metal forms exceeds that of the control one by the following figures: Cu-in 47,5 and 31,8; Pb-32,9 and 36,1; Mo-35,9 and 23,8; Zn-9,5 and 19,1; Co-5,1 and 5,9; Cd25,5 and 23,1 times. The humus content has decreased in 1,2-2,7 times, that of the total and mobile nitrogen has decreased in 1,1-2,17 and 1,4-2,6 times, phosphorus content in 1,0-1,87 and 1,08-2,74 times, potassium content in 1,0-1,38 and 1,13-2,06 times. The environmental reaction has turned from the neutral and poorly alkaline into poorly acidic and acidic one. The amount of HM in the soil and plants has exceeded the MAC (maximum allowable concentration) and the yield capacity of agricultural crops has fallen down by 7,5-29 %.


2019 ◽  
Author(s):  
Todd A Wellnitz ◽  
Jenna L Barlow ◽  
Cory M Dick ◽  
Terrance R Shaurette ◽  
Brian M Johnson ◽  
...  

Factors controlling the spread of invasive earthworms in Minnesota’s Boundary Waters Canoe Area Wilderness are poorly known. Believed to have been introduced by anglers who use them as bait, invasive earthworms can alter the physical and chemical properties of soil and modify forest plant communities. To examine factors influencing earthworm distribution and abundance, we sampled 38 islands across five lakes to assess the effects of campsites, fire, and entry point distance on earthworm density, biomass and species richness. We hypothesized that all three parameters would be greater on islands with campsites, lower on burned islands, and would decrease with distance from the wilderness entry point. In addition to sampling earthworms, we collected soil cores to examine soil organic matter and recorded ground and vegetation cover. Campsite presence was the single most important factor affecting sampled earthworm communities; density, biomass and species richness were all higher on islands having campsites. Fire was associated with reduced earthworm density, but had no direct effects on earthworm biomass or species richness. Fire influenced earthworm biomass primarily through its negative relationship to groundcover and through an interaction with entry point distance. Distance affected density but no other factor. For islands with campsites, however, distance from the entry point had a counterintuitive effect in that earthworm biomass, which increased with entry point distance.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2590
Author(s):  
Qisheng Li ◽  
Yanqing Han ◽  
Kunquan Chen ◽  
Xiaolong Huang ◽  
Kuanyi Li ◽  
...  

Water level is one of the most important factors affecting the growth of submerged macrophytes in aquatic ecosystems. The rosette plant Vallisneria natans and the erect plant Hydrilla verticillata are two common submerged macrophytes in lakes of the middle and lower reaches of the Yangtze River, China. How water level fluctuations affect their growth and competition is still unknown. In this study, three water depths (50 cm, 150 cm, and 250 cm) were established to explore the responses in growth and competitive patterns of the two plant species to water depth under mixed planting conditions. The results show that, compared with shallow water conditions (50 cm), the growth of both submerged macrophytes was severely suppressed in deep water depth (250 cm), while only V. natans was inhibited under intermediate water depth (150 cm). Moreover, the ratio of biomass of V. natans to H. verticillata gradually increased with increasing water depth, indicating that deep water enhanced the competitive advantage of V. natans over H.verticillata. Morphological adaptation of the two submerged macrophytes to water depth was different. With increasing water depth, H. verticillata increased its height, at the cost of reduced plant numbers to adapt to poor light conditions. A similar strategy was also observed in V. natans, when water depth increased from 50 cm to 150 cm. However, both the plant height and number were reduced at deep water depth (250 cm). Our study suggests that water level reduction in lake restoration efforts could increase the total biomass of submerged macrophytes, but the domination of key plants, such as V. natans, may decrease.


Author(s):  
N Nupur ◽  
M Shahjahan ◽  
MS Rahman ◽  
MK Fatema

The present experiment was conducted to evaluate the effects of bottom soil textural classes and different water depths on abundance of macrozoobenthos in aquaculture ponds. Three treatments, i.e., ponds bottom with sandy loam (T1), with loam (TS2) and with clay loam (T3) were considered in this experiment. Samples were collected from three different depths (60.96 cm, 106.68 cm and 152.40 cm) with three replications. The ranges of water quality parameters were suitable for the growth of macrozoobenthos during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed comparatively higher ranges in T2. Eight genera were recorded belonging to major groups of Chironomidae, Oligochaeta, Mollusca and Ceratoponogonidae. The highest population densities of Oligochaeta (1200±4.25 per m2), Chironomidae (1422±4.88 per m2), Ceratopogonidae (399±1.56 per m2) and Mollusca (977±2.24 per m2) were found in T2. The population densities of macrozoobenthos showed fortnightly variations in all the treatments. Among the three depths, significantly highest densities of macrozoobenthos were recorded in 106.68 cm in every treatment. The mean abundance of macrozoobenthos was significantly highest in T2. The present study indicates that loamy soil pond bottom along with water depth 106.68 cm is suitable for the growth and production of macrozoobenthos in aquaculture ponds. DOI: http://dx.doi.org/10.3329/ijarit.v3i2.17811 Int. J. Agril. Res. Innov. & Tech. 3 (2): 1-6, December, 2013


Sign in / Sign up

Export Citation Format

Share Document