scholarly journals Late Quaternary Tectonics along the Peri-Adriatic Sector of the Apenninic Chain (Central-Southern Italy): Inspecting Active Shortening through Topographic Relief and Fluvial Network Analyses

Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Federica Ferrarini ◽  
J. Ramón Arrowsmith ◽  
Francesco Brozzetti ◽  
Rita de Nardis ◽  
Daniele Cirillo ◽  
...  

Abstract Active compressional tectonics along the outer front of the Apenninic-Maghrebian chain (Italy) is well documented along the northern and central segments and in Sicily. On the other hand, the Southern Apenninic Outer Front (SAOF) orogenic activity is well established only until the Lower-Middle Pleistocene. We address the hypothesis of its subsequent late Quaternary activity in central-southern Italy (Abruzzo and Molise regions). We integrated topographic and fluvial network analyses along with morphotectonic investigation of fluvial terraces to identify evidence of differential rock uplift. We compared the results with the main geolithological units, known structural elements, and long-term deformation history from seismic line interpretation. We found variable evidence suggesting localized rock uplift in the Abruzzo region along the SAOF (Abruzzo Citeriore Basal Thrust segment) and inward structures on its hanging wall (Casoli-Bomba high), as well as along part of the Struttura Costiera thrust. Middle-to-Late Pleistocene deformation is constrained by terrace tilting and disruption along the Pescara river. Localized shortening along segments of the Apenninic Outer Front could explain the observed pattern of anomalies which is difficult to explain with long-wavelength regional uplift alone. Our reconstruction is consistent with the long-term deformation of the area and agrees with its seismotectonic setting. Despite the low deformation rate context and the peculiar geological setting which challenges the interpretation of the topographic and geomorphic signals, this study compels reconsideration, in terms of seismic hazard assessment, of the existence of late Quaternary active thrusting in central-southern Italy.

2013 ◽  
Vol 9 (2) ◽  
pp. 687-697 ◽  
Author(s):  
R. Orain ◽  
V. Lebreton ◽  
E. Russo Ermolli ◽  
A.-M. Sémah ◽  
S. Nomade ◽  
...  

Abstract. The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "mid-Pleistocene transition (MPT)", from about 1 to 0.6 Ma, the transition from 41- to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favourable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680–600 ka), La Pineta (ca. 600–620 ka), Guado San Nicola (ca. 380–350 ka) or Ceprano (ca. 345–355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma Basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviours benefited from a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional- and local-scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano Basin (Molise, Italy) attest to the evolution of vegetation and climate between MIS 13 and 9 (ca. 500 to 300 ka). In this basin the persistence of high edaphic humidity, even during the glacial phases, could have favoured the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase, rather than directly to the global climate changes.


2020 ◽  
Vol 12 (23) ◽  
pp. 10099
Author(s):  
José Luis Goy ◽  
Raquel Cruz ◽  
Antonio Martínez-Graña ◽  
Virginia Valdés ◽  
Mariano Yenes

From the geomorphological cartography, the geometric and spatial distribution of the quaternary forms and deposits are analyzed, with special relevance to the fluvial terraces that allow obtaining the chronology of the successive landscape changes of the course of the Tagus River attributed to the activity of the Fault of Alentejo-Plasencia (APF). The “Appalachian” relief of Monfragüe National Park, constituting a series of quartzitic combs with direction NW, between which they find slopes, hills and valleys following the same direction, for the dismantlement of the Cenozoic cover that was covering the substratum (still present in the central sector) and encasement of the Rivers Tagus and Tiétar. The remains of fluvial terraces inside and outside the Park stand out at different heights and so they originate from different times and show different landscapes along the routes of the Tagus river and its movement over time. In the north end (basin of the Campo Arañuelo), there are remains of ten fluvial terraces of relative importance attributed to the River Tagus (with heights relative to the thalweg between 120 and 20 m). In the south edge, there are eight levels attributed to a former fluvial drainage network, which assimilates to the River Tagus, with the more recent level reaching over 280 m on the current river. Neotectonics readjustments that rejuvenated the relief produced the elevation of the socle and cover, at the time of diversions in the path of the fluvial network, up to the structure and encasement (for supertax and/or antecedence). During the Quaternary, the activity of the Alentejo-Plasencia Fault (APF) has given rise to palaeogeographic changes in the fluvial valley of the Tagus River. During the ancient Lower Pleistocene, its course passed south of the current one (Talaván-Torrejón el Rubio basin); at the end of the Lower Pleistocene, it came out crossing the syncline through the Boquerón porthole, and the meander that bordered the town of Almaraz was abandoned; at the beginning of the Middle Pleistocene, it changes its direction, from NE–SW to SE–NW, leaving the porthole and joining the Tiétar river within the Park; later it moves somewhat to the south. These changes in the route and the anomalous fitting of the course of the Tagus River into the Paleozoic substrate, have been attributed to the APF, which, through impulses, has had a great activity from the Lower Pleistocene to the Middle Pleistocene.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 741
Author(s):  
Francesca Filocamo ◽  
Natalia Leone ◽  
Carmen Maria Rosskopf ◽  
Vittoria Scorpio ◽  
Santiago Giralt ◽  
...  

The lower Calore and middle Volturno valleys preserve stratigraphical and morphological evidence and tephrostratigraphic markers particularly suitable for reconstructing the long-term geomorphological evolution of the central-southern Apennines. Aim of our study is to identify the main steps of the Quaternary landscape evolution of these valley systems and to improve knowledge about the relationships between fluvial processes and tectonics, volcanic activity, climatic and human influences. To this purpose, we carried out an integrated geomorphological and chrono-stratigraphical analysis of identified fluvial landforms and related deposits, integrated by 230Th/234U datings on travertines from the Telese Plain area. The study highlighted in particular: (1) fluvial sedimentation started in the Middle Pleistocene (~650 ka) within valleys that originated in the lower Pleistocene under the control of high-angle faults; (2) extensional tectonics acted during the Middle and Upper Pleistocene, driving the formation of the oldest fluvial terraces and alluvial fans, and persisted beyond the emplacement of the Campanian Ignimbrite pyroclastic deposits (~39 ka); and (3) from the late Upper Pleistocene onwards (<15 ka), the role of tectonics appears negligible, while climatic changes played a key role in the formation of three orders of valley floor terraces and the youngest alluvial fans.


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 331 ◽  
Author(s):  
Dario Gioia ◽  
Marcello Schiattarella ◽  
Salvatore Giano

Morphometric analyses of both the topography and drainage network have been carried out in a large sector of the Ionian coastal belt of southern Italy in order to unravel the possible control of Late Quaternary thrust front activity on the evolution of the fluvial net. The study area extends in the southernmost sector of the Bradano Foredeep and is featured by several orders of uplifted marine terraces, ranging in age from Middle Pleistocene to Late Quaternary. The flight of the marine terraces is deeply cut by a trellis-type and regularly spaced minor fluvial network. Morphotectonic investigations based on field survey, photo-aerial interpretation, topographic attributes, morphometric indices, and analysis of longitudinal river profiles suggest a strong control on the drainage network arrangement by a pervasive orthogonal fracture system, produced and preserved into the brittle caprock of the terraces, made by conglomerate. Since a similar pervasive and orthogonal fracture pattern is typically generated by gentle folding of rocks, the development of the Ionian hydrographic networks could be attributed to a general—maybe still active—bending of the foredeep area due to the eastward propagation of blind thrusting of the Apennines orogenic chain.


2021 ◽  
Author(s):  
Ning Zhong ◽  
Hanchao Jiang ◽  
Haibing Li ◽  
Dechen Su ◽  
Hongyan Xu ◽  
...  

Abstract Quantifying the magnitude of an earthquake is very important for long-term and medium-term earthquake prediction, post-earthquake emergency rescue and seismic hazard assessment. Paleoseismology is the investigation of past earthquakes in the geological record, in particular their location, timing and size. Uncertainties remain in the paleoearthquake magnitudes determined by traditional surface rupture parameters, especially because most seismic events do not result in surface ruptures. In order to address the problem of magnitude evaluation of earthquakes that did not reveal major dislocations, this paper deals with the methods used to determine the seismic shaking intensity based on the types and forms of soft-sediment deformation structures, including maximum liquefaction distance, thickness of disturbed layer, empirical formulae, and thickness of rapidly deposited sand layer. Then we discuss and analyze these methods in terms of their theoretical basis, advantages and disadvantages, accuracy, applicability and problems. We chose two case studies: first, a typical seismics-related deposit (liquefied layer and dsirupted layer) represented by a seismite in the late-Pleistocene Lake Lisan section near Masada in the Dead Sea Basin; and second, the liquefied diapir triggered by an earthquake in the late-Quaternary lacustrine sediments at Luobozhai in the upper reaches of the Minjiang River, east Tibet. The six methods listed above are employed to determine earthquake magnitudes associated with the seismics-related deposit and liquefied diapir, yielding magnitudes of 5.5-6.5 and 6-7, respectively. The combination of the six methods, provided a new and relatively convenient method for determining seismic shaking, especially in lacustrine sediments. This study can serves as a valid reference for comparing methods of calculating the magnitude of a paleoearthquake based on surface rupture parameters, and provides a better understanding of the long-term seismic activity and risk in tectonically active regions.


2012 ◽  
Vol 8 (5) ◽  
pp. 5181-5207 ◽  
Author(s):  
R. Orain ◽  
V. Lebreton ◽  
E. Russo Ermolli ◽  
A.-M. Sémah ◽  
S. Nomade ◽  
...  

Abstract. The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "Mid-Pleistocene Transition (MPT)", from about 1 to 0.6 Ma, the transition from 41-ka to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favorable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680–600 ka), La Pineta (ca. 600–620 ka), Gaudo San Nicola (ca. 380–350 ka) or Ceprano (ca. 345–355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviors benefited of a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional and local scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano basin (Molise, Italy), attest to the evolution of vegetation and climate between OIS 13 and 9 (ca. 500 to 300 ka). In this basin, the persistence of high edaphic humidity, even during the glacial phases, could have favored the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding to the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase rather than directly to the global climate changes.


2009 ◽  
Vol 71 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Tabito Matsu'ura ◽  
Akira Furusawa ◽  
Hidetaka Saomoto

AbstractWe estimated the long-term vertical velocity profile across the northeastern Japan forearc by using the height distribution of late Quaternary marine and fluvial terraces, and we correlated the ages of the two marine terraces with marine isotope stages (MIS) 5.5 and 5.3 or 5.1 by cryptotephra stratigraphy. The uplift rate, estimated as 0.11–0.19 m ka− 1 from the relative heights between the terrace surfaces and eustatic sea levels, was nearly equal to, or slightly slower than, the uplift rate farther inland (0.15–0.19 m ka− 1), as determined from the relative heights of fill terrace surfaces. In contrast, the short-term vertical velocity profile, obtained from GPS observations, showed that the forearc is currently subsiding at a maximum rate of 5.4 ± 0.4 mm yr− 1. Thus, the current short-term (geodetic) subsidence does not reflect long-term (geological) tectonic movement. Short-term vertical deformation is probably driven by subduction erosion or elastic deformation caused by interplate coupling, or both. However, long-term uplift is probably due not to moment release on the mega-thrust but to crustal thickening.


2011 ◽  
Vol 182 (4) ◽  
pp. 347-365 ◽  
Author(s):  
Stéphane Baize ◽  
Marc Cushing ◽  
Francis Lemeille ◽  
Céline Gelis ◽  
David Texier ◽  
...  

Abstract The Vuache fault is a prominent structure cutting the southernmost Swiss Molasse basin, from the Subalpine massifs to the Jura range. It controls a superficial (0 to 3 km), moderate (moment magnitude ≤ 5) and recurrent (a few events per century) seismicity. In order to address the seismic hazard associated to this fault, we compiled existing data, performed new field investigations and reprocessed existing seismic lines. The newly acquired data validate the hypothesis of an active structure. Its imprint in the landscape and its Quaternary long-term activity are demonstrated, especially by the offset of incised small valleys. Some sites also reveal the occurrence of Quaternary deposits deformed along the fault. Despite the alternative interpretation (glacitectonism) already published, we favour the hypothesis of a tectonic origin for some of them. Concerning the fault slip rate, dating problems preclude definitely addressing the issue, but regional correlations suggest that long-term slip rate ranges from 0.15 to 0.4 mm/a. In addition, as previously concluded by other authors, there is probably a basement fault beneath the surface structure. A connection between the two is not completely demonstrated because of the poor quality of the seismic line at the key point, but this hypothesis should nonetheless be considered in seismic hazard assessment. The relative weight of a deep-seated fault (up to 10 or 15 km into the brittle crust) hypothesis may be low because the well-established data fit more with a scenario of shallow fault producing moderate to low magnitude earthquake. This hypothesis – which would drastically increase the possible maximum magnitude – should not however be neglected in seismic hazard assessment, especially because the coseismic origin of deformations in La Petite Balme is still a possible alternative.


Quaternary ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 25
Author(s):  
Josep M. Parés ◽  
Mathieu Duval ◽  
Angel Soria-Jáuregui ◽  
María José González-Amuchástegui

The Cenozoic sedimentary basins in the Iberian Peninsula show a change from long-term basin infill to incision, a transition that indicates a period of major drainage reorganization that culminated in the throughflow of the networks to the Atlantic and Mediterranean oceans. Both the cause of the transition from aggradation to degradation and the linkages to tectonic, climatic, and geomorphic events hinge on the chronology of the fluvial network incision and excavation of the basin’s sedimentary fills. In this paper, we describe the first chronologic data on the highest fluvial terraces of the upper area of the Ebro River, one of the largest fluvial systems in the Iberian Peninsula, to determine the onset of incision and excavation in the basin. For this purpose, we combine electron spin resonance (ESR) and paleomagnetism methods to date strath terraces found at 140, 90, and 85 m above the current river level. Our results show ages of ca. 1.2 and 1.5 Ma for the uppermost river terraces in the upper Ebro catchment, constraining the minimum age of the entrenchment of the upper Ebro River.


Sign in / Sign up

Export Citation Format

Share Document