Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean

2011 ◽  
Vol 182 (4) ◽  
pp. 279-303 ◽  
Author(s):  
Andrea Billi ◽  
Claudio Faccenna ◽  
Olivier Bellier ◽  
Liliana Minelli ◽  
Giancarlo Neri ◽  
...  

Abstract In the western Mediterranean area, after a long period (late Paleogene-Neogene) of Nubian (W-Africa) northward subduction beneath Eurasia, subduction has almost ceased, as well as convergence accommodation in the subduction zone. With the progression of Nubia-Eurasia convergence, a tectonic reorganization is therefore necessary to accommodate future contraction. Previously-published tectonic, seismological, geodetic, tomographic, and seismic reflection data (integrated by some new GPS velocity data) are reviewed to understand the reorganization of the convergent boundary in the western Mediterranean. Between northern Morocco, to the west, and northern Sicily, to the east, contractional deformation has shifted from the former subduction zone to the margins of the two back-arc oceanic basins (Algerian-Liguro-Provençal and Tyrrhenian basins) and it is now mainly active in the south-Tyrrhenian (northern Sicily), northern Liguro-Provençal, Algerian, and Alboran (partly) margins. Onset of compression and basin inversion has propagated in a scissor-like manner from the Alboran (c. 8 Ma) to the Tyrrhenian (younger than c. 2 Ma) basins following a similar propagation of the cessation of the subduction, i.e., older to the west and younger to the east. It follows that basin inversion is rather advanced on the Algerian margin, where a new southward subduction seems to be in its very infant stage, while it has still to really start in the Tyrrhenian margin, where contraction has resumed at the rear of the fold-thrust belt and may soon invert the Marsili oceanic basin. Part of the contractional deformation may have shifted toward the north in the Liguro-Provençal basin possibly because of its weak rheological properties compared with those of the area between Tunisia and Sardinia, where no oceanic crust occurs and seismic deformation is absent or limited. The tectonic reorganization of the Nubia-Eurasia boundary in the study area is still strongly controlled by the inherited tectonic fabric and rheological attributes, which are strongly heterogeneous along the boundary. These features prevent, at present, the development of long and continuous thrust faults. In an extreme and approximate synthesis, the evolution of the western Mediterranean is inferred to follow a Wilson Cycle (at a small scale) with the following main steps : (1) northward Nubian subduction with Mediterranean back-arc extension (since ~35 Ma); (2) progressive cessation, from west to east, of Nubian main subduction (since ~15 Ma); (3) progressive onset of compression, from west to east, in the former back-arc domain and consequent basin inversion (since ~8–10 Ma); (4) possible future subduction of former back-arc basins.

2005 ◽  
Vol 42 (4) ◽  
pp. 495-515 ◽  
Author(s):  
Ian J Ferguson ◽  
Kevin M Stevens ◽  
Alan G Jones

Magnetotelluric (MT) measurements were made on a profile across the Trans-Hudson orogen in 1992 as part of the Lithoprobe transect. The present study includes analysis of results from a 300 km-long section of the profile in which allocthonous Paleoproterozoic juvenile terranes and arc rocks of the western Trans-Hudson orogen have been juxtaposed against the Archean Sask craton. Impedance tensor decomposition of data from the 40 MT sites in the area indicates a geoelectric strike of N28°E. Two-dimensional inversion of the data using a non-linear conjugate gradient algorithm provided images of the resistivity structure. Resistivity images reveal that the crust of the Sask craton is relatively resistive (>2000 Ω·m). In contrast, the rocks of the Flin Flon belt, Glennie domain, and La Ronge domain are mostly relatively conductive (<100–1000 Ω·m). In the east of the study area, the images suggest that the Tabbernor fault juxtaposes more conductive rocks of the Glennie domain in the west against more resistive Archean rocks in the east in the upper 20 km of the crust. In the west of the study area, the images confirm that the North American Central Plains conductor occurs within westward-dipping rocks of the La Ronge domain. The resistivity images also reveal that the lower crust beneath the west of the Glennie domain, within a crustal culmination defined by seismic reflection data, is electrically conductive (<100 Ω·m). An explanation for the enhanced conductivity is that part of the lower crust beneath the western Glennie domain is of Proterozoic age. In this case, a possible source for the enhanced conductivity, based on its location at the edge of the Sask continental block, is Proterozoic ocean margin rocks.


2008 ◽  
Vol 40 (3) ◽  
pp. 359-377 ◽  
Author(s):  
E. LUCCHETTI ◽  
M. TASSO ◽  
P. PIZZETTI ◽  
S. DE IASIO ◽  
G. U. CARAVELLO

SummaryThis paper compares the structures of the surnames of 75 municipal populations living in six north-western Mediterranean regions. Its purpose is to unravel the relations between the local populations in Corsica and Sardinia and the links between these populations and those living in the Italian and French continental territory. On the basis of the matrix of similarity of surnames, some topological representations have been drafted showing the above-mentioned relations between populations under the light of their geographical position, their recent history and studies of genetic analysis. Corsica has an eterogeneous surname structure and evident similarity of the north with Tuscany and some centres of continental France. When only the populations of Sardinia were taken into consideration, it emerged that they differ among each other in relation to their geographical position and their history; when, instead, they were considered in relation to other populations outside the island, it was possible to observe that they form a highly different cluster. This study also identified many differences in the analysed geographical areas of Sardinia. In the minor islands – Elba, Giglio, Capraia – the structure of the surnames has a Tuscan origin as well as some similarity with other geographically distant areas, as in the case of the island of Giglio, if compared with some communities of Liguria.


2020 ◽  
Vol 16 (1) ◽  
pp. 283-298 ◽  
Author(s):  
Pierre Sabatier ◽  
Marie Nicolle ◽  
Christine Piot ◽  
Christophe Colin ◽  
Maxime Debret ◽  
...  

Abstract. North Africa is the largest source of mineral dust on Earth, which has multiple impacts on the climate system; however, our understanding of decadal to centennial changes in African dust emissions over the last few millenniums is limited. Here, we present a high-resolution multiproxy analysis of sediment core from high-elevation Lake Bastani, on the island of Corsica, to reconstruct past African dust inputs to the western Mediterranean area over the last 3150 cal BP. Clay mineralogy with palygorskite and a clay ratio associated with geochemical data allow us to determine that terrigenous fluxes are almost exclusively related to atmospheric dust deposition from the western Sahara and Sahel areas over this period. High-resolution geochemical contents provide a reliable proxy for Saharan dust inputs with long-term (millennial) to short-term (centennial) variations. Millennial variations have been correlated with the long-term southward migration of the Intertropical Convergence Zone (ITCZ), with an increase in dust input since 1070 cal BP. This correlation suggests a strong link with the ITCZ and could reflect the increased availability of dust sources to be mobilized with an increase in wind and a decrease in precipitation over western and North Africa. For centennial to decadal variations, wavelet analyses show that since 1070 cal BP, the North Atlantic Oscillation (NAO) has been the main climatic forcing, with an increase in Saharan dust input during the positive phase, as suggested by previous studies over the last decades. However, when the ITCZ is in a northern position, before 1070 cal BP, wavelet analyses indicate that total solar irradiance (TSI) is the main forcing factor, with an increase in African dust input during low TSI. With climate reanalysis over the instrumental era, during low TSI we observe a significant negative anomaly in pressure over Africa, which is known to increase the dust transport. These two climatic forcing factors (NAO, TSI) modulate Saharan dust inputs to the Mediterranean area at a centennial timescale through changes in wind and transport pathways.


1994 ◽  
Vol 31 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Joseph B. Whalen ◽  
George A. Jenner ◽  
Ernst Hegner ◽  
Clément Gariépy ◽  
Frederick J. Longstaffe

Siluro–Devonian granitoids span a wide compositional range (~50–76% SiO2) and can be subdivided into two groups: (i) monzonitic or incompatible element enriched with affinities to within-plate magmatism (WPG); and (ii) calc-alkalic or incompatible element depleted with supra-subduction zone affinities (VAG). Granitoid εNd(T = 0.4 Ga) values range from −1 to +5.5; most lie between +3 and +5.5. 207Pb/204Pb isotopic compositions range from 15.52 to 15.61; most fall between ~15.55 and 15.59. Most δ18O values lie between +5.5 and +8‰. No well-established trends exist between SiO2 and isotopic composition, and isotopic compositions do not differ between the two trace element defined granitoid groups.Though Pb isotopic data are consistent with a major contribution to the granitoids from Proterozoic-aged Laurentian plate rocks (i.e., Grenville basement), Nd and O isotopic data are not. These isotopic data are consistent with major source components derived from early Paleozoic depleted or supra-subduction zone affected mantle and (or) crustal rocks derived from the early Paleozoic mantle(s). These protoliths would not have seen significant interaction with time-integrated old crustal material or surficial processes. Granitoid Pb isotopic data can be reconciled with an early Paleozoic mantle–crust origin, but it may also be that the Pb isotopes are decoupled from other isotopic systems. In either case, Nd and O isotopic data clearly prohibit the involvement of significant amounts of Grenville crust and suggest that seismic-reflection data do not define crustal blocks, or at least not blocks having a tectonic and geologic history easily related to the surface geology.


2020 ◽  
Author(s):  
Eline Le Breton

&lt;p&gt;The Western Mediterranean-Alpine belt is remarkable for its tectonic complexity, i.e. strong arcuation of plate boundaries, fast trench retreat, upper-plate extension and switch of subduction/collision polarity around the Adriatic plate (Adria). The kinematic evolution of the Western Mediterranean area is enigmatic due to the intermittently motion of small continental plates (Adria, Iberia and Sardinia-Corsica) that are caught between two major plates (Africa and Europe), converging since Cretaceous time. Reconstructing the past motion of these micro-plates is challenging due to the strong deformation of their boundaries but is key to understand the geodynamic evolution of the whole area.&lt;/p&gt;&lt;p&gt;The Neogene tectonic evolution is well constrained using magnetic anomalies and transform zones in the Atlantic Ocean for the motion of Europe, Iberia and Africa, and by reconstructing the amount of convergence along fold-and-thrust belts (Apennines, Alps, Dinarides, Provence) and coeval divergence along extensional basins (Liguro-Provencal and Tyrrhenian basins, Sicily Channel Rift Zone) for the motion of Adria and Sardinia-Corsica. Those reconstructions show that Adria had a slight independent motion from Africa and rotated counter-clockwise of about 5&amp;#186; relative to Europe since 20 Ma. However, uncertainties increase and debates arise as one goes back in time. The main debates concern the past motion of Iberia and where its motion relative to Europe is being accommodated in Mesozoic time. Different kinematic scenarios have been proposed depending on the interpretation of paleomagnetic dataset of Iberia, magnetic anomalies in the North Atlantic, and geological-geophysical record of deformation in the Pyrenees and between Iberia and Sardinia-Corsica. Those scenarios have different implications for the tectonic evolution of the Apennines, especially for the Permian-Triassic paleo-tectonic setting of Sardinia, Calabria and Adria, and for the extent and timing of closure of the Liguro-Piemont Ocean. It is important to discuss those implications to better understand subduction processes in the Apennines and their driving forces.&lt;/p&gt;


2020 ◽  
Author(s):  
Carlo Brandini ◽  
Stefano Taddei ◽  
Valentina Vannucchi ◽  
Michele Bendoni ◽  
Bartolomeo Doronzo ◽  
...  

&lt;p&gt;In this work we present the results obtained through a dynamic downscaling of the ERA5 reanalysis dataset (hindcast) of ECMWF, using high-resolution meteorological and wave models defined on unstructured computation grids along the Mediterranean coasts, with a particular focus on the North-Western Mediterranean area. Downscaling of the ERA5 meteorological data is obtained through the BOLAM and MOLOCH models (up to a resolution of 2.5 km) which force an unstructured WW3 model with a resolution of up to 500 m along the coast. Models were validated through available meteorological stations, wave buoy data and X-band wave radars, the latter for the purposes of wave spectra validation.&lt;/p&gt;&lt;p&gt;On the one hand, this allowed, by extracting the time series of some attack parameters of the waves along the coast, and according to the type of coast (rocky coasts, sandy coasts, coastal structures etc.), to compute the return periods and to characterize the impact of any individual storm.&amp;#160;On the other hand, it is possible to highlight some trends observed in the last 30 years, during which recent research is showing an increasing evidence &amp;#160;of some changes in global circulation at regional to local scales. These changes also include effects of wind rotation, wave regimes, storm surges, wave-induced coastal currents and coastal morphodynamics. For example, in the North-Western Mediterranean extreme events belonging to cyclonic weather-types circulation with stronger S-SE components (like the storm of October 28-30th 2018 and many others), rather than events associated with perturbations of Atlantic origin and zonal circulation, are becoming more frequent. These long-term wind/wave climate trends can have consequences not only in the assessment of long-term risk due to main morphodynamic variations (ie. coastal erosion), but also in the short-term risk assessment.&lt;/p&gt;&lt;p&gt;This work was funded by the EU MAREGOT project (2017-2020) and ECMWF Special Project spitbran &amp;#160;&amp;#8220;Evaluation of coastal climate trends in the Mediterranean area by means of high-resolution and multi-model downscaling of ERA5 reanalysis&amp;#8221; (2018-2020).&lt;/p&gt;


Geophysics ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 3-22 ◽  
Author(s):  
J. H. Lofthouse ◽  
G. T. Bennett

In‐line arrays for both source and receiver have been implemented for marine seismic reflection data acquisition. The in‐line array dimensions (variable within limits) are considerably greater than any previously used system of which we are aware. The arrays were designed to attenuate extremely strong sea‐bottom multiples during the data acquisition phase. The source comprised 25 airguns arranged in five identical in‐line subarrays. Each subarray produced a signal of better than 6 barmeters acoustic intensity with a primary‐to‐bubble ratio of approximately 4.4 from guns totaling 297 cu in. When this source was delivered in 1973, it constituted the most powerful production airgun source for which we had seen calibration measurements. Receiver arrays were implemented by a “weighting‐mixing” box (which formed part of the DFS IV instrument), the input to which comprised 53 channels of data each from a 50 m live section in the streamer cable. Processing techniques which are complementary to the field procedures have been developed. Comparisons with “conventional” data (and such data processed to simulate field arrays) show significant improvements in “data quality” from the new field techniques, that is, the new data are easier to interpret geologically because interfering multiples have been attenuated relative to desired energy. Whilst the large outgoing signal amplitude will have made some contribution to the data quality, the major improvement is believed to result from the use of arrays in the recording phase. This system, first used for production in August 1973, was subsequently used successfully during recording of 17,000 km of offshore seismic data from Eastern Canada, the North Sea, and the Mediterranean.


Ophiolite belts are found in Tibet along the Zangbo, Banggong and Jinsha River Sutures and in the Anyemaqen mountains, the eastern extension of the Kunlun mountains. Where studied, the Zangbo Suture ophiolites are characterized by: apparently thin crustal sequences (3-3.5 k m ); an abundance of sills and dykes throughout the crustal and uppermost mantle sequences; common intraoceanic melanges and unconformities; and an N-MORB petrological and geochemical composition. The ophiolites probably formed within the main neo-Tethyan ocean and the unusual features may be due to proximity to ridge-transform intersections, rather than to genesis at very slow -spreading ridges as the current consensus suggests. The Banggong Suture ophiolites have a supra-subduction zone petrological and geochemical composition — although at least one locality in the Ado Massif shows MORB characteristics. However, it is also apparent that the dykes and lavas show a regional chemical zonation, from boninites and primitive island arc tholeiites in the south of the ophiolite belt, through normal island arc tholeiites in the central belt to island arc tholeiites transitional to N-MORB in the north. The ophiolites could represent fragments of a fore-arc, island arc, back-arc complex developed above a Jurassic, northward-dipping subduction zone and emplaced in several stages during convergence of the Lhasa and Qiangtang terranes. The ophiolites of the Jinsha River Suture have a N-MORB composition where analysed, but more information is needed for a proper characterization. The Anyemaqen ophiolites, where studied, have a within-plate tholeiite composition and may have originated at a passive margin: it is not, however, certain whether true oceanic lithosphere, as opposed to strongly attenuated continental lithosphere, existed in this region.


2006 ◽  
Vol 43 (4) ◽  
pp. 433-446 ◽  
Author(s):  
Nathan Hayward ◽  
Mladen R Nedimović ◽  
Matthew Cleary ◽  
Andrew J Calvert

The eastern Juan de Fuca Strait is subject to long-term, north–south-oriented shortening. The observed deformation is interpreted to result from the northward motion of the Oregon block, which is being driven north by oblique subduction of the oceanic Juan de Fuca plate. Seismic data, acquired during the Seismic Hazards Investigation in Puget Sound survey are used, with coincident first-arrival tomographic velocities, to interpret structural variation along the Devil's Mountain fault zone in the eastern Juan de Fuca Strait. The Primary fault of the Devil's Mountain fault zone developed at the northern boundary of the Everett basin, during north–south-oriented Tertiary compression. Interpretation of seismic reflection data suggests that, based on their similar geometry including the large magnitude of pre-Tertiary basement offset, the Primary fault of the Devil's Mountain fault west of ~122.95°W and the Utsalady Point fault represent the main fault of the Tertiary Devil's Mountain fault zone. The Tertiary Primary fault west of ~122.95°W was probably kinematically linked to faults to the east (Utsalady Point, Devil's Mountain, and another to the south), by an oblique north–northeast-trending transfer zone or ramp. Left-lateral transpression controlled the Quaternary evolution of the Devil's Mountain fault zone. Quaternary Primary fault offsets are smaller to the east of ~122.95°W, suggesting that stress here was in part accommodated by the prevalent oblique compressional structures to the north. Holocene deformation has focussed on the Devil's Mountain, Utsalady Point, and Strawberry Point faults to the east of ~122.8° but has not affected the Utsalady Point fault to the west of ~122.8°W.


Sign in / Sign up

Export Citation Format

Share Document