A High-Pressure Thermal Aureole of the Bayan-Kol Gabbro–Monzodiorite Intrusion (Western Sangilen, Southeastern Tuva): Evidence for Lower-Crust Mafic Magma Chambers

2021 ◽  
Vol 62 (9) ◽  
pp. 987-1005
Author(s):  
A.Yu. Selyatitskii ◽  
O.P. Polyansky ◽  
R.A. Shelepaev

Abstract —Thermal metamorphism produced an aureole near the early Paleozoic Bayan-Kol gabbro–monzodiorite intrusion in the Erzin shear zone of western Sangilen (Tuva–Mongolia microcontinent, Central Asian Orogenic Belt). Field observation of intrusive contact, structure–textural and mineral transformations of metamorphic rocks, regular changes in the chemical composition of minerals with approaching the intrusive contact, and high temperature gradient from intrusive to wallrocks verified the occurrence of a contact aureole near the Bayan-Kol intrusion. The high-gradient thermal metamorphism (M2) affected garnet–staurolite–kyanite schists that formed during earlier regional metamorphism (M1) at 6.2–7.9 kbar and 600–670 ºC. The 0.5 km wide M2 metamorphic aureole mapped along the northwestern intrusion margin consists of a muscovite–sillimanite zone adjacent to the sedimentary country rocks and a cordierite–K-feldspar zone on the side of the intrusion. The M2 metamorphic reactions occurred within the granulite facies temperature range 880–910 ºC along the contact with monzodiorites and at ~950 ºC along the boundary with gabbronorites; the temperature on the aureole periphery was about 640 ºC. Pressure estimates indicate deep-seated high-grade metamorphism at 6.9–7.8 kbar, while the intrusion itself crystallized at 7.7–7.8 kbar. The suggested numerical model implying the formation of a thermal aureole at a depth of 26 km (7 kbar) in the lower crust is consistent with the temperature pattern determined by geothermobarometry for several key points of the metamorphic zoning and confirms its deep-level origin. Thus, the aureole near the Bayan-Kol intrusion represents a rare case of contact metamorphism in the lower continental crust. The obtained results, along with published petrological and geochronological evidence, reveal two depth levels of the early Paleozoic M2 metamorphism in the Sangilen area: upper (7–15 km, 2–4 kbar) and lower (26–30 km, 7–8 kbar) crust. The Bayan-Kol gabbro–monzodiorite intrusion is likely a small apophysis or a fragment of a deep-crust intermediate magma chamber, while the moderate-pressure (7–8 kbar) M2 granulites in the Erzin shear zone are products of high-gradient metamorphism related to the Cambrian–Ordovician collisional mafic magmatism in the Sangilen area.

1979 ◽  
Vol 43 (326) ◽  
pp. 201-209 ◽  
Author(s):  
P. K. Verma

SummaryThe Lower Cambrian Weymouth Formation at Nahant, Massachusetts, consisting of interbedded pelitic and calcareous rocks, was intruded by the Nahant Gabbro. The predominant metapelitic mineral assemblage of the contact aureole is quartz-muscovite-chlorite-magnetite-ilmenite. The calcareous hornfelses exhibit a varied mineral assemblage, and in some cases the variation can be spatially related to the intrusive. A number of cross-cutting thin mineral veins, many containing prehnite, are characteristically associated with these calcsilicate rocks.The minerals have been analysed by electron microprobe and this work indicates the presence of a possible solvus in the Fe3+-Al epidote solid solution series. At the physicochemical conditions of the formation of the Nahant hornfelses, the ferric mole fractions of coexisting epidotes are 0.49 and 0.98.Comparison with experimental work shows that the conditions of the contact metamorphism were T ≃ 500°C, Ptotal ≃ 2 kb, and XCO2 ≃ 0.2. However, the present assemblages are the result of a later low-grade regional metamorphism, the ultimate product of which was prehnite.


1983 ◽  
Vol 20 (9) ◽  
pp. 1409-1420 ◽  
Author(s):  
Paul A. Studemeister

A stock of trondhjemite intrudes an Archean succession metamorphosed to the greenschist facies at Gutcher Lake, 30 km north of Wawa in Ontario. The stock is 4 km2 in plan and is partly enveloped by an aureole of epidote–amphibole hornfels up to 1 km wide. Within this aureole chlorite partly replaces biotite; chlorite, calcite, and quartz mantle hornblende and epidote; zoned amphibole has a rim of actinolite; and albite varies from 0 to 8% An. The stock has chlorite pseudomorphous after biotite, and feldspar is mottled by white mica and has a clear rim of albite. Fractures filled with quartz, calcite, ankerite, white mica, chlorite, pyrite, and native gold cross-cut the stock and its aureole. Wall rocks to these veins were modified by hydrothermal alteration with addition of Si, Fe, K, H2O + CO2, S, and Rb, leaching of Na, and a shift in Fe2+/Fet from ~0.66 to ~0.90. Primary inclusions in the vein quartz have a solution with a CO2 gas bubble that homogenizes into the liquid at around 300 °C.Initial contact metamorphism of volcanic rocks at T = 450–550 °C and P < 200 MPa (2 kbar) formed an aureole of epidote–hornblende hornfels near the stock. Subsequent regional metamorphism during the Archean at T = 325–450 °C and P = 200–300 MPa (2–3 kbar) retrograded the stock and its contact aureole to a lower greenschist assemblage. The retrogression involved hydration and CO2 fixation in hornfels and trondhjemite by a hot reducing fluid of low salinity. This metamorphic fluid precipitated native gold with quartz and pyrite along fractures in response to cooling and chemical reaction with wall rocks.


2017 ◽  
Vol 54 (11) ◽  
pp. 1165-1178 ◽  
Author(s):  
Nabil A. Shawwa ◽  
Robert P. Raeside ◽  
David W.A. McMullin ◽  
Christopher R.M. McFarlane

At Kellys Mountain, Cape Breton Island, Nova Scotia, the late Neoproterozoic Glen Tosh formation (a low-grade metapsammite–metapelite unit of the George River Metamorphic Suite) has been intruded by diorite, granodiorite, and granite plutons, and the diorite hosts a narrow contact metamorphic aureole. New mapping and sampling in the contact aureole reveals that the metasedimentary rocks have reached amphibolite-facies metamorphism resulting in the development of neoformed biotite, muscovite, cordierite, ilmenite, garnet, andalusite, sillimanite, monazite, and spinel within the meta-pelite, a mineral assemblage also found in the Kellys Mountain Gneiss as a result of low-pressure regional metamorphism. Neoformed minerals and the disappearance of foliation defines a contact metamorphic aureole within 300 m of the pluton contacts. Petrographic and microprobe analyses of equilibrium assemblages in metapelitic units of the contact aureole yielded metamorphic pressures of 250 MPa, implying an intrusion depth of ∼9 km, with temperatures ranging from 365 to 590 °C. The presence of earlier-formed andalusite and garnet indicates the rocks may have initially undergone a low-pressure regional metamorphic event prior to contact metamorphism. Monazite in the contact aureole was dated using in-situ U–Pb methods and yielded an age of 480.9 ± 3.7 Ma, interpreted as the time of formation of the contact metamorphic aureole.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-64
Author(s):  
I. K. Kozakov ◽  
E. B. Salnikova ◽  
I. V. Anisimova ◽  
P. Ya. Azimov ◽  
V. P. Kovach ◽  
...  

The Tuva–Mongolian terrane (TMT) of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous-carbonate cover. The formation of the northern part of TMT is marked by the granitoids of the Sumsunur Complex with an age of 785 ± 11 Ma. The Sangilen and Khan-Khukhay blocks of its southern part also form a composite structure, which originated during Early Paleozoic(500–490 Ma) low-moderate pressure regional metamorphism reaching amphibolites-granulite facies. The earlier high-pressure metamorphism was established in the Moren Complex of both the blocks. In the Sangilen block, this metamorphism reached conditions of kyanite-garnet-biotite-orthoclase subfacies of amphibolites facies (temperature ~750oC, pressure 9–10 kbar). The upper age limit of this metamorphism is determined by granites with an age of 536 ± 6 Ma, which cut across migmatized biotite gneisses of the Moren Complex. The latter are intruded by the granitoids of the Ortoadir pluton, which were previously dated at 521 ± ± 12 Ma (U-Pb method, TIMS). Its emplacement predated the Early Paleozoic low-moderate pressure metamorphism, the timing of which is constrained by syn- and postmetamorphic granitoids with ages of 496 ± 4 and 489 ± 3 Ma. The age of 513 ± 4 Ma established for the granitoids of the Ortoadir Complex in the Khan-Khukhay Block more accurately constrains the lower age boundary of collision processes. This determined the amalgamation of the fragments of the high-pressure metamorphic belt with basement and carbonate-shelf cover units of the Tuva–Mongolian terrane, as well as the upper age boundary of early metamorphism. The timing of the main mappable structure of the Khan–Khukhay Block and low-moderate pressure regional metamorphism is marked by the synmetamorphic granitoids with an age of 505 ± ± 2 Ma. In general, the metamorphic rocks of the Sangilen, Khan–Khukhay, and Kaakhem blocks can be considered as fragments of the Late Ediacaran high-pressure metamorphic belt, which were amalgamated to the western margin of TMT within 515–505 Ma, after emplacement of the granitoids of the Ortoadir Complex, and were reworked by regional Early Paleozoic low-moderate pressure metamorphism.


2007 ◽  
Vol 44 (10) ◽  
pp. 1413-1437 ◽  
Author(s):  
Tanya Tettelaar ◽  
Aphrodite Indares

The Tasiuyak paragneiss at the western margin of the Nain Plutonic Suite has been subjected to two granulite-facies metamorphic events: (i) regional metamorphism during the Paleoproterozoic Torngat orogeny, and (ii) contact metamorphism due to emplacement of the Mesoproterozoic Nain Plutonic Suite. Regional metamorphism led to partial melting of pelitic rocks and the development of a locally well-preserved sequence of prograde and retrograde textures. These textures are partly controlled by bulk composition and formed in the pressure–temperature (P–T) field of the continuous reaction: biotite + sillimanite + plagioclase + quartz  = garnet + K-feldspar + melt, along a hairpin P–T path with peak conditions of ~8–10 kbar (0.8–1.0 GPa) and up to 870 °C in the NaKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O) system. These textures controlled the development of the contact metamorphic assemblages. Contact metamorphism of the pelitic rocks between the Tessiarsuyungoakh intrusion and the Makhavinekh Lake pluton led to growth of orthopyroxene-cordierite symplectite after garnet–biotite, and cordierite–spinel symplectite after garnet–sillimanite. These phase associations attest to reactions in specific microtextural settings, some of which produced a second generation of partial melt. Maximum temperatures were above ~750 °C and pressures were lower than those of the regional metamorphism. The aureole around the Makhavinekh Lake pluton is ~4 km wide and shows a progressive development of the contact metamorphic assemblages toward the pluton. In contrast, the contact metamorphic overprint is incipient around the Tessiarsuyungoakh intrusion, which developed a ~20 m wide contact aureole and is most prominent in screens of paragneiss within that intrusion.


1954 ◽  
Vol 91 (6) ◽  
pp. 445-462 ◽  
Author(s):  
R. I. Harker

AbstractThe pelitic hornfelses surrounding the Carn Chuinneag–Inchbae complex have, with the other rocks in the area, been subjected to the regional metamorphism which affected the Moine Series as a whole. The minerals of the original hornfelses have reacted to form assemblages which are typical of regional rather than purely thermal metamorphism although the massive structure of the hornfelses is well preserved.By studying the changes which took place in the hornfelses during the regional metamorphism it has been possible to deduce the most likely mineral assemblages indigenous to the original hornfelses.The results of the chemical analyses of some of the pelitic hornfelses are presented and chemical data on some of the garnets are given. It is considered unlikely that all the garnets in the hornfelses, which are essentially almandines, formed as a result of the earlier contact metamorphism: some at least probably occur as a result of the later regional metamorphism.


2002 ◽  
Vol 66 (6) ◽  
pp. 941-951 ◽  
Author(s):  
S. J. Ings ◽  
J. V. Owen

Abstract Reaction textures including corona structures in granulites from the Proterozoic Long Range Inlier of western Newfoundland are spatially associated with a Silurian (0.34 Ga) mafic intrusion, the Taylor Brook Gabbro Complex. They comprise, in metabasites and tonalitic gneiss, coronal orthopyroxene and plagioclase on garnet and, in metapelites, cordierite and spinel formed at the expense of sillimanite, garnet and quartz. Although generally interpreted to indicate near-isothermal decompression (ITD) following regional metamorphism, which in the inlier occurred at ˜1.10–1.03 Ga, these features appear to be absent elsewhere. Therefore they are interpreted to be products of contact metamorphism (near-isobaric heating – IBH) within the thermal aureole of the gabbro. Thus, there is a ˜0.7 Ga difference (i.e. mid-Proterozoic vs. mid-Silurian) between the age of the regional metamorphic mineral assemblages and the contact aureole assemblages. The observation that classic ITD features occur in this aureole environment underscores the fact that P-sensitive reactions can progress during IBH as well as by pressure release.


2003 ◽  
Vol 140 (5) ◽  
pp. 595-612 ◽  
Author(s):  
JOCHEN E. MEZGER ◽  
CEES W. PASSCHIER

The Bossòst dome is an E–W-trending elongated structural and metamorphic dome developed in Cambro-Ordovician metasedimentary rocks in the Variscan Axial Zone of the central Pyrenees. A steep fault separates a northern half-dome, cored by massif granite, from an E–W-trending doubly plunging antiform with granitic sills and dykes in the core to the south. The main foliation is a flat-lying S1/2 schistosity that grades into a steeper-dipping slaty cleavage at the dome margins. Three major deformational and two metamorphic phases can be differentiated. S1/2 schistosity is an axial planar cleavage to W-vergent recumbent folding that probably occurred in mid-Westphalian time. Peak regional metamorphism M1 is characterized by static growth of staurolite and garnet following thermal relaxation of the previously thickened crust. Strong non-coaxial deformation recording uniform top-to-the-SE extension during D2a is preserved in staurolite–garnet schists in a 1.5 km thick, shallowly SE-dipping zone in the southeastern dome. A 500 m thick contact aureole (M2) was imprinted on the regionally metamorphosed rocks following the intrusion the Bossòst granite during D2b. More coaxial deformation prevailed during synkinematic growth of M2 phases in the inner part of the contact aureole around the northern part of the dome, where it obliterated D2a fabrics. Progressive non-coaxial deformation continued in the southeastern antiform and is recorded by late-synkinematic growth of cordierite. Successive overprinting of the M1 staurolite–garnet assemblage by andalusite and cordierite of M2 is preserved in the southern part. The assemblage muscovite+cordierite+staurolite+biotite is considered metastable, given the low Mn and Zn contents of staurolite and cordierite, and interpreted as the result of prograde metamorphism during decompression. P–T conditions during M2 were approximately 3 kbar and 600 °C. Pervasive crenulations and mesoscopic to regional southerly verging folds are the result of D3 NNE–SSW compression post-dating ductile deformation and contact metamorphism. Polymetamorphic assemblages of the Bossòst dome preserve a regionally confined zone of ESE-directed extensional shearing within an overall N–S compressional setting. Exact timing of extensional shearing is not known, but can be constrained by recumbent folding during the mid-Westphalian and granitic intrusions, which confine it to Late Carboniferous time (c. 305 Ma). Crustal-scale flat-lying extensional shear zones with similar orientation and time frame are observed in the Hospitalêt massif of the eastern Axial Zone. This suggests that crustal extension, though probably restricted by regional strain partitioning over orthogneiss or intruding granitic bodies within an overall compressive setting, was not uncommon in Late Carboniferous time in the Axial Zone of the Pyrenees.


1996 ◽  
Vol 33 (11) ◽  
pp. 1570-1582 ◽  
Author(s):  
J. L. Crowley ◽  
E. D. Ghent ◽  
R. L. Brown

New and previously published metamorphic data suggest that the Clachnacudainn terrane of the southern Omineca Belt has tectonic affinities with the overlying Selkirk allochthon, rather than the underlying Shuswap metamorphic complex. This interpretation is based on relationships between metamorphic minerals and deformation phases, plutons, and the upper boundary of the terrane, the Standfast Creek fault. Regional kyanite and staurolite zones in the structurally lowest part of the terrane are overlain by a garnet zone that is continuous upward across the Standfast Creek fault into the Selkirk allochthon. This metamorphism is inferred to be Jurassic age based mainly on the continuity of these zones with those of known age in the allochthon. Textural relationships show that metamorphism occurred at different times relative to deformation across the terrane. Thermobarometry and a petrogenetic grid indicate that the terrane attained lower to middle amphibolitc facies conditions. Sillimanite and andalusite zones in the contact aureoles of posttectonic mid-Cretaceous plutons overprint the regional metamorphic zones and the Standfast Creek fault. Comparison of estimated pressures shows that approximately 5–10 km of exhumation occurred between regional and contact metamorphism. These metamorphic data are interpreted to indicate that the Standfast Creek fault had minor displacement after regional metamorphism and negligible displacement after contact metamorphism. Therefore, the fault cannot be an Eocene ductile to ductile–brittle shear zone that appressed or omitted metamorphic isograds and rapidly exhumed the Clachnacudainn terrane in its footwall, as was previously proposed.


1952 ◽  
Vol 89 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Germaine A. Joplin

AbstractIn an attempt to dissect the granitization process in an area of regional metamorphism, it is suggested that granite is forcibly injected during strong compression, that the compressional wave passes upwards and outwards in advance of the magma, and that several changes take place before its arrival. Six stages in this process are recognized in the Cooma and Albury districts of N.S.W.: (1) Regional Metamorphism, (2) Superimposed Thermal Metamorphism, (3) Permeation without Magmatic Addition, (4) Addition from an Attenuated Magma, (5) Formation of a Potassic Wave-Front, and (6) Injection of the Magma as Concordant Intrusions. The conditions favouring granitization are discussed and the question of basic fronts is considered.


Sign in / Sign up

Export Citation Format

Share Document