New Data on Hydrogeochemical and Isotopic Composition of Natural Waters of the Baidar Valley (Crimean Peninsula)

2021 ◽  
Vol 62 (12) ◽  
pp. 1401-1421
Author(s):  
D.A. Novikov ◽  
Yu.G. Kopylova ◽  
A.V. Chernykh ◽  
F.F. Dultsev ◽  
A.N. Pyryaev ◽  
...  

Abstract —Results of study of natural waters of the Baidar valley (southwestern Crimean Peninsula) obtained during the 2018–2019 field works are presented. Major groundwater resources of the study area are confined to the Upper Jurassic aquifer complex, which serves as a recharge source for the aquifer systems of the Plain Crimean and the Azov–Kuban’ artesian basins and hydrogeologic folded region of the Crimean Mountains mega-anticlinorium. The regional waters are fresh and ultrafresh, predominantly of calcium bicarbonate composition, with TDS varying from 208 to 1269 mg/dm3. The study enabled their classification into eight geochemical groups: (1) waters of a regional fracture zone in carbonate-terrigenous rocks affected by continental salinization; (2) waters of a regional fracture zone affected by leaching of aluminosilicates and sulfide oxidation; (3) waters of a regional fracture zone dominated by sodium aluminosilicates in the fracture filling (long-term interaction in the water–rock system), affected by continental salinization; (4) regional fracture zones dominated by sodium aluminosilicates affected by anthropogenic continental salinization; (5) groundwaters in fracture–vein aquifers affected by leaching of aluminosilicates and sulfide oxidation; (6) fracture–vein aquifers affected by leaching of sodium aluminosilicates (long-term interaction in the water–rock system); (7) waters in fractured karst aquifers; and (8) surface waters subjected to continental salinization. Fracture karst waters, which were found to be most protected against human impact and continental salinization processes, are slightly alkaline (pH = 7.7), fresh (with average TDS = 444 mg/dm3), with low silicon concentrations (2.23 mg/dm3), and of calcium bicarbonate composition. Waters residing in regional fracture and fracture–vein zones are affected by continental salinization and anthropogenic load and are neutral to alkaline (pH = 7.1–8.6), predominantly fresh (TDS = 269–1269 mg/dm3), with average silicon concentrations of 4.61–4.70 mg/dm3, of calcium bicarbonate composition, with high concentrations of sulfate ion, magnesium, and sodium. The waters of the Chernaya River, Chernorechensk reservoir, and lakes, which are also affected by continental salinization, are slightly alkaline (pH = 8.3), brackish (TDS = 207–364 mg/dm3), with an average silicon concentration of 1.18 mg/dm3, of calcium bicarbonate composition, with high concentrations of chlorine ion, magnesium, and sodium. The calculated intensity of chemical-element migration in waters of the background composition follows the descending order: very strong, I17.7 > Br14.4; strong, Se2.83 > B2.22 > Sr1.46 > Sb1.12 > Be1.07 > Hg1.06; moderately strong, Zn0.74 > Mo0.50 > Li0.46 > Sc0.41 > Ag0.18 > As0.16 > Si0.123 > Ba0.122; weak, Cr0.10 > Cu0.096 > Bi0.080 > Sn0.068 > Tl0.067 > P0.062 > Ni0.043 > Ta0.040 > Ge0.034 > Cd0.028 > Fe0.026 > Rb0.024 > Co0.023 > Pb0.020 > W0.017 > V0.012; very weak (inert), Nb0.008 > Hf0.0033 > Mn0.0031 > La0.0029 > Cs0.0022 > Ti0.0018 > Ga0.0016 > Y0.0013 > Al0.0008 > Zr0.0008. All the studied waters are found to be of atmospheric origin and located along the global (GMWL) and local (LMWL) meteoric water lines. Their δ18O value varies from –9.9 to –3.3‰, and δD value, from –64.2 to –32.5‰. Sedimentary carbonate rocks, atmospheric carbon dioxide, organic compounds, and hydrolysis of aluminosilicate minerals serve as the source of δ13C bicarbonate ion in natural waters of the Baidar valley. Surface waters have a heavier carbon isotope composition (δ13C = –9.2 to –6.2‰), which is due to atmospheric CO2, plant growth, and associated microbial activity. Fracture karst waters are characterized by a lighter carbon isotope composition (δ13C = –12.8 to –11.0‰) because of their interaction with dispersed organic matter. Waters of the regional fracture and fracture–vein zones display the widest variation in δ13C (–15.5 to –6.9‰), which is associated with a mixed type of “isotope supply” to the waters. A complex hydrogeochemical field that has formed in the Baidar valley tends to be increasingly affected by the anthropogenic factor.

2019 ◽  
Vol 98 ◽  
pp. 01036
Author(s):  
Larisa A. Nichkova ◽  
Dmitry A. Novikov ◽  
Anatoliy V. Chernykh ◽  
Fedor F. Dultsev ◽  
Galina A. Sigora ◽  
...  

The paper discusses the pioneering results of comprehensive hydrogeochemical studies of natural waters of the Baydar valley (southwestern parts of the Crimean Peninsula), whose major aquifers are confined to the upper Jurassic sediments (karst limestone) representing the most important hydrogeological feature of the study area. Fresh and ultra-fresh waters of predominantly bicarbonate calcium composition with total mineralization in the range from 194 to 1137 mg/dm3 are most widespread in the region. The analyzed waters (surface, ground and artesian) differ significantly in chemical composition and their basic characteristics have been arranged in the following patterns: mineralization of 254-832 mg/dm3 and neutral pH (6.98-7.54) for artesian waters; higher mineralization level (up to 1137 mg/dm3) and wide variations of pH values (from 7.18 to 8.31) for ground waters; mineralization from 194 to 288 mg/dm3 and a slightly alkaline pH (between 8.02 and 8.04) for surface waters collected in the Chyornaya river basin and Chernorechensk reservoir. The studied waters display a unique spectrum of trace elements and REE distribution.


Author(s):  
Ricardo Sánchez-Murillo

This study presents a hydrogeochemical analysis of spring responses (2013-2017) in the tropical mountainous region of the Central Valley of Costa Rica. The isotopic distribution of δ18O and δ2H in rainfall resulted in a highly significant meteoric water line: δ2H = 7.93×δ18O + 10.37 (r2=0.97). Rainfall isotope composition exhibited a strong dependent seasonality. The isotopic variation (δ18O) of two springs within the Barva aquifer was simulated using the FlowPC program to determine mean transit times (MTTs). Exponential-piston and dispersion distribution functions provided the best-fit to the observed isotopic composition at Flores and Sacramento springs, respectively. MTTs corresponded to 1.23±0.03 (Sacramento) and 1.42±0.04 (Flores) years. The greater MTT was represented by a homogeneous geochemical composition at Flores, whereas the smaller MTT at Sacramento is reflected in a more variable geochemical response. The results may be used to enhance modelling efforts in central Costa Rica, whereby scarcity of long-term data limits water resources management plans.


Author(s):  
سعيد مزعل موازي ◽  
يحيى فائق حسين ◽  
عبد المنعم دولاني ◽  
سيف يوسف عبدالله السويدي

Recently, many studies have been conducted to discover or improve cancers treatment. The current study aims to investigate the anticancer effect of thymoquinone, cordyceps, spirulina, ganoderma lucidium, poria cocos, and lion’s mane in four different concentrations 4, 8, 16, and 32 ug (equivalent to 1 mg/mL) in two different time treatments (48 and 96 hours) on human nasal epithelial cell line RPMI 2650. By using cell culture cytotoxicity techniques and assay, the highest anticancer effect on RPMI 2650 was obtained by thymoquinone. The lowest anticancer effect was demonstrated by poria cocos and cordyceps. However, these two medications showed higher anticancer effect when given in short-term treatment (48 hours) compared to long-term treatment (96 hours). Ganoderma lucidium and spirulina showed better impact than poria cocos, cordyceps, and lion’s mane in term of cells cytotoxicity. Mild to moderate antineoplastic effect was seen by utilizing lion’s mane treatment compared other drugs. Therefore, adopting a long-term treatment of high concentrations and doses of thymoquinone, cordyceps, spirulina, ganoderma lucidium, poria cocos, and lion’s mane can be more effective in the treatment of nasal cancer. In conclusion, these drugs were found to be a promising cancer remedy; therefore, they can be utilized as alternative treatment for nasal cancer or any other type of cancer therapy.


2021 ◽  
Author(s):  
Jon R. Hawkings ◽  
Benjamin S. Linhoff ◽  
Jemma L. Wadham ◽  
Marek Stibal ◽  
Carl H. Lamborg ◽  
...  

AbstractThe Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year−1). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming.


Author(s):  
M. Focker ◽  
H. J. van der Fels-Klerx ◽  
A. G. J. M. Oude Lansink

AbstractEarly 2013, high concentrations of aflatoxin M1 were found in the bulk milk of a few dairy farms in the Netherlands. These high concentrations were caused by aflatoxin B1 contaminated maize from Eastern Europe that was processed into compound feed, which was fed to dairy cows. Since the contamination was discovered in the downstream stages of the supply chain, multiple countries and parties were involved and recalls of the feed were necessary, resulting into financial losses. The aim of this study was to estimate the direct short-term financial losses related to the 2013 aflatoxin incident for the maize traders, the feed industry, and the dairy sector in the Netherlands. First, the sequence of events of the incident was retrieved. Then, a Monte Carlo simulation model was built to combine the scarce and uncertain data to estimate the direct financial losses for each stakeholder. The estimated total direct financial losses of this incident were estimated to be between 12 and 25 million euros. The largest share, about 60%, of the total losses was endured by the maize traders. About 39% of the total losses were for the feed industry, and less than 1% of the total losses were for the dairy sector. The financial losses estimated in this study should be interpreted cautiously due to limitations associated with the quality of the data used. Furthermore, this incident led to indirect long-term financial effects, identified but not estimated in this study.


2019 ◽  
Author(s):  
Yunjiang Zhang ◽  
Olivier Favez ◽  
Jean-Eudes Petit ◽  
Francesco Canonaco ◽  
Francois Truong ◽  
...  

Abstract. Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly-time resolved year-round characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of Aerosol Chemical Speciation Monitor (ACSM) and multi-wavelength aethalometer from November 2011 to March 2018 at a background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase of LO-OOA concentrations and contributions (50–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely high concentrations and OA contributions (32–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter, and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about 200 ng m−3 yr−1) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil fuel and biomass burning black carbon components), and no trend for LO-OOA over the 6+-year investigated period.


2011 ◽  
Vol 75 (3) ◽  
pp. 658-669 ◽  
Author(s):  
Yurena Yanes ◽  
Crayton J. Yapp ◽  
Miguel Ibáñez ◽  
María R. Alonso ◽  
Julio De-la-Nuez ◽  
...  

AbstractThe isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.


1982 ◽  
Vol 20 (17) ◽  
pp. 65-67 ◽  

The provision of high concentrations of oxygen is often part of the treatment of cardiac or respiratory disease. The use of domiciliary oxygen is generally limited to those patients with advanced chronic respiratory disease. It can be given in a number of ways - as continuous long-term therapy, as portable oxygen therapy, or intermittently for short periods. This article discusses the benefits and costs.


Author(s):  
D. A. NOVIKOV ◽  
T. V. KORNEEVA ◽  
YU. G. KOPYLOVA ◽  
A. V. CHERNYKH ◽  
F. F. DULTSEV ◽  
...  

2014 ◽  
Vol 26 (4) ◽  
pp. 367-380 ◽  
Author(s):  
Beatriz Concepción Tracanna ◽  
Silvia Nelly Martínez De Marco ◽  
María de los Ángeles Taboada ◽  
Virginia Mirande ◽  
María de Lourdes Gultemirian ◽  
...  

AIM: The Escaba dam is located in the south of the Tucumán province, Argentina, at 650 m above sea level. It has an extension of 541 ha. and a depth of 65 m and its tributaries are the Chavarría, Las Moras, El Chorro and Singuil rivers. The climate is mild with dry winters and rainy summers. The objective of this study was to characterize physicochemical parameters in the limnetic zone of the dam and the mouths of the tributaries to determine the water quality. METHODS: Seasonal sampling was carried out between August 2010 and May 2012. Temperature, transparency, pH and electrical conductivity were field measured, whereas dissolved oxygen, biochemical oxygen demand (BOD5), major ion constituents and nitrogen and phosphate compounds were analyzed at the laboratory. RESULTS: The water was classified as sodium-calcium-bicarbonate with neutral to alkaline pH, and thermal stratification during spring and summer. The water assayed was well oxygenated except for the bottom of the limnetic zone during the summer months. Lowest transparency was measured in the El Chorro River in November 2011 (0.12 m) and highest degree of transparency in the Singuil River during the winter of 2010 (4.1 m). The waters assayed showed weak mineralization with conductivities between 83 and 218 µS.cm-1. Maximum BOD5 value (183 mg.L-1) was measured in the Singuil River in spring 2010. Highest values for the different nitrogen compounds were as follows: 7 mg NO3-.L-1 at the bottom of the limnetic zone in August 2010, 0.07 mg NO2-.L-1 in the Las Moras River in May 2011 and 1.8 mg NH4+.L-1 in the Chavarría River in March 2011. During the summer of 2012 orthophosphate reached a value of 0.22 mg.L-1 at the bottom of the limnetic zone. The TN/TP ratio revealed that phosphate was generally the limiting factor and rarely nitrogen. CONCLUSIONS: Considering the TN, TP and transparency parameters the ecosystem was classified as hypertrophic. PCA allowed a seasonal differentiation of the sites, and components 1 and 2 classified the samples according to nutrient gradient, dissolved oxygen, BOD5 and temperature.


Sign in / Sign up

Export Citation Format

Share Document