Critical Scaling Behavior of Microemulsion Systems

1984 ◽  
Vol 24 (02) ◽  
pp. 197-202 ◽  
Author(s):  
John S. Huang ◽  
Mahn Won Kim

Abstract We used dynamic light scattering to study the characteristic droplet size, in dilute single-phase microemulsions near the critical phase transition point. We found that there existed a general power-law dependence of f on point. We found that there existed a general power-law dependence of f on the reduced variable = . Here stands for any thermodynamic and system variables whose critical value is denoted by . The variables of interest in the present work are temperature and alkane carbon number (ACN). It is found that where = . This is observed both in water- and oil-internal microemulsions, independent of the surfactant properties. This behavior, known as the scaling behavior, was analyzed in terms of generalized homogeneous functions with as the degree of homogeneity. It turns out that only one of the reduced variables is an independent variable in these functions, greatly simplifying the description of the properties of microemulsions in the neighborhood of a critical phase boundary. Introduction Critical phenomena have been under intensive investigation for the past 20 years by physicists and physical chemists. There are several reasons for this subject to attract so much attention. SINGULARITIES. A large number of thermodynamic properties, especially ones related to the second-order derivative of the free energy, become singular (in a mathematical sense) at the critical point. UNIVERSALITY. There exists a universal description (scaling laws) of the singular behavior of all the corresponding thermodynamic parameters in a large number of vastly different systems. These range from simple liquid/gas mixtures, liquid crystals, and magnetic alloys to the quantum mechanical superfluids. NONCLASSICAL BEHAVIOR. Though critical properties are macroscopic properties pertaining to the bulk phases, classical thermodynamics is properties pertaining to the bulk phases, classical thermodynamics is inadequate to explain quantitatively what happens in the neighborhood of the critical points. NEW PARAMETERS. Geometric properties (such as the symmetry group of the so-called "order parameter") and spatial dimensionality of the system are more important than the nature of basic interactions that produce the phase transition. phase transition. Great progress has been achieved, both experimentally (such as dynamic light scattering) and theoretically (such as the powerful scaling laws and renormalization group theories), in the study of critical phenomena. As a result, a vast amount of knowledge has been accumulated on the subject in recent years. Critical phenomena may also play an important role in the understanding of the fundamental mechanism in EOR by microemulsions and micellar solutions. Microemulsions do exhibit unmistakable critical behavior in certain composition and temperature ranges near the cloud point of a homogeneous system. There are many ways to cause a homogeneous microemulsion to split into a multiphase system. When any of the system variables, such as the temperature, salinity, composition of the oil, and concentration of the dispersed phase, are changed in such a manner that the resultant phase transition occurs in the neighborhood of a plait point, which corresponds to a vanishing tie line, then the system will exhibit critical phenomena. All critical transitions are characterized by pronounced thermodynamic fluctuations. These fluctuations are described by a con-elation length that diverges at the critical point, causing a strong scattering of light known as the critical opalescence, a feature that is also observed in microemulsions. By definition, the correlation length diverges at the critical value, Zc, of the corresponding system variable, . Therefore, the reduced variable delta Z = Zc -Z expresses a measure of a "thermodynamic distance" to the critical point. We use the lower-case letter z = delta Z/Zc to denote the dimensionless scaled variables that are important for the description of the universal behavior of a microemulsion near a critical phase boundary. In the neighborhood of the critical point, the physical phase boundary. In the neighborhood of the critical point, the physical properties of the microemulsion systems depend on some universal function properties of the microemulsion systems depend on some universal function of scaled variables only, independent of the chemical makeup of the system. We call this the critical scaling behavior. Experimental Procedure MICROEMULSION SYSTEM. We have chosen two model microemulsions for our study. One is a simple pure three-component oil-continuous system containing pure normal alkanes, distilled water, and a surfactant commonly known as AOT. This surfactant, sodium di-2-ethyl hexylsulfosuccinate, was twice recrystallized from hexane over activated charcoal. The other is a water-continuous system composed of 8% NaCl brine solution, normal alkanes and a combined surfactant (hepta-ethoxylated octadecyl methyl ammonium-i-dodecyl-o-xylene sulfonates). SPEJ p. 197

2010 ◽  
Vol 19 (08n09) ◽  
pp. 1570-1576
Author(s):  
Z. CHEN ◽  
R. WADA ◽  
A. BONASERA ◽  
T. KEUTGEN ◽  
K. HAGEL ◽  
...  

The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He 4- He 3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.


Author(s):  
Eldred H. Chimowitz

Thermodynamic scaling near the critical point is a signature of critical phenomena, and many useful applications of supercritical solvent fluids depend upon exploiting this behavior in some technologically interesting way. Near the critical point, many transport and thermodynamic properties show anomalous behavior which is usually linked to the divergence of certain thermodynamic properties, such as the fluid’s isothermal compressibility. In figures 3.1 and 3.2 we depict the near-critical behavior of both the density of xenon and the thermal conductivity of carbon dioxide, respectively, adapted from published data [1, 2]. The onset of what appear to be critical singularities in these properties is clearly evident in both instances. In this chapter, we focus upon the thermodynamic basis for this type of behavior. In the theory of critical phenomena, the limiting behavior of certain thermodynamic properties near the critical point assumes special significance. In particular, properties that diverge at the critical point are of interest, and this divergence is usually described in terms of scaling laws.


1986 ◽  
Vol 79 ◽  
Author(s):  
D. Schwahn ◽  
K. Mortensen ◽  
H. Yee-Madeira

AbstractCritical behaviour of PSD-PVME polymer blends are presented. Spinodal and binodal transition temperatures have been determined by the use of a SANS-camera, and non-meanfield characteristics have been observed close to the critical point. A dynamic decomposition study has been performed by the use of a neutron double crystal diffraction.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. Liam Fitzpatrick ◽  
Emanuel Katz ◽  
Matthew T. Walters ◽  
Yuan Xin

Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $$ \overline{g} $$ g ¯ , and is expected to have a critical point at a tuned value $$ {\overline{g}}_{\ast } $$ g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $$ \overline{g} $$ g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.


2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Raymond Wiedmann ◽  
Lea Lenke ◽  
Matthias R. Walther ◽  
Matthias Mühlhauser ◽  
Kai Phillip Schmidt

1992 ◽  
Vol 68 (17) ◽  
pp. 2608-2611 ◽  
Author(s):  
Surjit Singh ◽  
R. Krishnan ◽  
G. W. Robinson

2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2016 ◽  
Vol 848 ◽  
pp. 339-343
Author(s):  
Xiao Kun Zhao ◽  
Bo Ping Zhang ◽  
Lei Zhao ◽  
Li Feng Zhu

The modified behavior of the phase transition temperatures (TO-T and/or TC) between orthorhombic (O), tetragonal (T) and cubic (C) that caused by doping Sb5+ in (Li0.052Na0.493K0.455)(Nb1-xSbx)O3 (LNKNSx) ceramics was reported in the present investigation. The results show that differing from the insensitive TO-T to the Sb5+ content, TC splits into two peaks TCI and TCII when doping Sb5+. The decreased TCI by raising x may be ascribed to the Sb-rich grains and the settled TCII round 480 °C resulting from the Sb-lack ones. The enhanced piezoelectric coefficient d33 value of 263 pC/N and planar mode electromechanical coupling coefficient kp value of 42.5% at x=0.052 can be attributed to the polymorphic phase boundary (PPB) behavior with an appropriate ratio between T and O phases without any second phase.


Sign in / Sign up

Export Citation Format

Share Document