Retention of CO2-Foaming Agents on Chalk: Effects of Surfactant Structure, Temperature, and Residual-Oil Saturation

2009 ◽  
Vol 12 (03) ◽  
pp. 419-426 ◽  
Author(s):  
Ingebret Fjelde ◽  
John Zuta ◽  
Ingrid Hauge

Summary Injection of carbon dioxide (CO2) is a well-known enhanced-oil-recovery (EOR) technique. Formation of stable foam inside the reservoir can improve macroscopic sweep efficiency. On the other hand, retention of surfactants decreases the cost-efficiency of the EOR process. This paper presents flow-through retention experiments with CO2-foaming agents on outcrop Liege chalk plugs at two different temperatures: 55 and 70°C. Two branched ethoxylated (EO) sulfonates with different ethoxylation degree, S1 (EO=7) and S2 (EO=12), were used. The aim was to investigate the effect of ethoxylation degree on surfactant retention. Furthermore, the effects of temperature and residual oil on surfactant retention were studied. The effect of waterflooding followed by CO2 flooding on surfactant retention at reservoir conditions was also examined. Partitioning of the foaming agents between water and oil phases was studied. Results show that increasing the ethoxylation degree of the surfactant decreases the retention on chalk cores saturated with formation water at 55°C. S2, which was found to give the lowest retention at 55°C, was found to have a higher retention at 70°C. The presence of residual-oil saturation after waterflooding (Sorw) decreased the retention of S1 and increased the retention of S2 in comparison to the absence of residual oil. The retention of S2 after waterflooding followed by CO2 flooding at 340 bar and 55°C was in the same range as retention on 100%-water-saturated core, but significantly lower than retention in residual-oil-saturated cores. The experiments have shown that not only are surfactant structure and temperature important for the retention of surfactants, but also the presence of oil.

2011 ◽  
Vol 14 (8) ◽  
pp. 699-708 ◽  
Author(s):  
R. Z. Moreno ◽  
R. G. Santos ◽  
C. Okabe ◽  
D. J. Schiozer ◽  
O. V. Trevisan ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 447-458 ◽  
Author(s):  
Pengpeng Qi ◽  
Daniel H. Ehrenfried ◽  
Heesong Koh ◽  
Matthew T. Balhoff

Summary Water-based polymers are often used to improve oil recovery by increasing sweep efficiency. However, recent laboratory and field work have suggested these polymers, which are often viscoelastic, may also reduce residual oil saturation (ROS). The objective of this work is to investigate the effect of viscoelastic polymers on ROS in Bentheimer sandstones and identify conditions and mechanisms for the improved recovery. Bentheimer sandstones were saturated with a heavy oil (120 cp) and then waterflooded to ROS with brine followed by an inelastic Newtonian fluid (diluted glycerin). These floods were followed by injection of a viscoelastic polymer, hydrolyzed polyacrylamide (HPAM). Significant reduction in residual oil was observed for all corefloods performed at constant pressure drop when the polymer had significant elasticity (determined by the dimensionless Deborah number, NDe). An average residual-oil reduction of 5% original oil in place (OOIP) was found during HPAM polymer floods for NDe of 0.6 to 25. HPAM floods with very-low elasticity (NDe < 0.6) did not result in observable reduction in ROS; however, another 10% OOIP residual oil was reduced when the flow rate was increased (NDe > 25). All experiments at constant pressure drop indicate that polymer viscoelasticity reduces the ROS. Results from computed-tomography (CT) scans further support these observations. A correlation between Deborah number and ROS is also presented.


2021 ◽  
Author(s):  
Prakash Purswani ◽  
Russell T. Johns ◽  
Zuleima T. Karpyn

Abstract The relationship between residual saturation and wettability is critical for modeling enhanced oil recovery (EOR) processes. The wetting state of a core is often quantified through Amott indices, which are estimated from the ratio of the saturation fraction that flows spontaneously to the total saturation change that occurs due to spontaneous flow and forced injection. Coreflooding experiments have shown that residual oil saturation trends against wettability indices typically show a minimum around mixed-wet conditions. Amott indices, however, provides an average measure of wettability (contact angle), which are intrinsically dependent on a variety of factors such as the initial oil saturation, aging conditions, etc. Thus, the use of Amott indices could potentially cloud the observed trends of residual saturation with wettability. Using pore network modeling (PNM), we show that residual oil saturation varies monotonically with the contact angle, which is a direct measure of wettability. That is, for fixed initial oil saturation, the residual oil saturation decreases monotonically as the reservoir becomes more water-wet (decreasing contact angle). Further, calculation of Amott indices for the PNM data sets show that a plot of the residual oil saturation versus Amott indices also shows this monotonic trend, but only if the initial oil saturation is kept fixed. Thus, for the cases presented here, we show that there is no minimum residual saturation at mixed-wet conditions as wettability changes. This can have important implications for low salinity waterflooding or other EOR processes where wettability is altered.


2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


1983 ◽  
Vol 23 (03) ◽  
pp. 417-426 ◽  
Author(s):  
Philip J. Closmann ◽  
Richard D. Seba

Abstract This paper presents results of laboratory experiments conducted to determine the effect of various parameters on residual oil saturation from steamdrives of heavy-oil reservoirs. These experiments indicated that remaining oil saturation, both at steam breakthrough and after passage of several PV of steam, is a function of oil/water viscosity ratio at saturated steam conditions. Introduction Considerable attention has been given to thermal techniques for stimulating production of underground hydrocarbons, particularly the more viscous oils production of underground hydrocarbons, particularly the more viscous oils and tars. Steam injection has been studied as one means of heating oil in place, reducing its viscosity, and thus making its displacement easier. place, reducing its viscosity, and thus making its displacement easier. A number of investigators have measured residual oil saturations remaining in the steam zone. Willman et al. also analyzed the steam displacement process to account for the oil recoveries observed. A number of methods have been developed to calculate the size of the steam zone and to predict oil recoveries by application of Buckley-Leverett theory, including the use of numerical simulation. The work described here was devoted to an experimental determination of oil recovery by steam injection in linear systems. The experiments were unscaled as far as fluid flow rates, gravity forces, and heat losses were concerned. Part of the study was to determine recoveries of naturally occurring very viscous tars in a suite of cores containing their original oil saturation. The cores numbered 95, 140, and 143 are a part of this group. Heterogeneities in these cores, however, led to the extension of the work to more uniform systems, such as sandpacks and Dalton sandstone cores. Our interest was in obtaining an overall view of important variables that affected recovery. In particular, because of the significant effect of steam distillation, most of the oils used in this study were chosen to avoid this factor. We also studied the effect of pore size on the residual oil saturation. As part of this work, we investigated the effect of the amount of water flushed through the system ahead of the steam front in several ways:the production rate was varied by a factor of four,the initial oil saturation was varied by a factor of two, andthe rate of heat loss was varied by removing the heat insulation from the flow system. Description of Apparatus and Experimental Technique Two types of systems were studied: unconsolidated sand and consolidated sandstone. The former type was provided by packing a section of pipe with 50–70 mesh Ottawa sand. Most runs on this type of system were in an 18-in. (45.72-cm) section of 1 1/2 -in. (3.8 1 -cm) diameter pipe, although runs on 6-in. (15.24-cm) and 5-ft (152.4-cm) lengths were also included. Consolidated cores 9 to 13 in. (22.86 to 33.02 cm) long and approximately 2 1/4 in. (5.72 cm) in diameter were sealed in a piece of metal pipe by means of an Epon/sand mixture. A photograph of two 9-in. (22.86-cm) consolidated natural cores (marked 95 and 143) from southwest Missouri, containing original oil, is shown as Fig. 1. In all steamdrive runs, the core was thermally insulated to reduce heat loss, unless the effect of heat loss was specifically being studied. Flow was usually horizontal except for the runs in which the effects of flushing water volume and of unconsolidated-sand pore size were examined. Micalex end pieces were used on the inlet end in initial experiments with consolidated cores to reduce heat leakage from the steam line to the metal jacket on the outside of the core. During most runs, however, the entire input assembly eventually became hot. SPEJ p. 417


1980 ◽  
Vol 20 (04) ◽  
pp. 281-292 ◽  
Author(s):  
George C. Bernard ◽  
L.W. Holm ◽  
Craig P. Harvey

Abstract This paper presents results from a study designed to improve effectiveness of CO2 flooding by reducing CO2 mobility. In the course of reaching this objective we (1) screened surfactants for their ability to generate an effective and stable emulsion with CO2 under reservoir conditions, (2) determined the concentration range over which surfactants were effective, (3) examined chemical stability of the surfactants at reservoir conditions, (4) determined the extent to which emulsifying action alters gas and liquid mobilities in carbonate and sandstone cores, (5) determined that surfactant can enhance the production of residual oil from watered-out production of residual oil from watered-out carbonate cores by CO2, and (6) showed that the permeability reduction caused by surfactant can be permeability reduction caused by surfactant can be dissipated.At reservoir conditions required for miscible displacement, carbon dioxide exists in its critical state as a very dense fluid whose viscosity is about oneeighth that of crude oil. Generally, this unfavorable viscosity and mobility ratio produces inefficient oil displacement. This study shows that surfactant reduces CO2 mobility and should improve oil displacement by CO2, presumably by reducing flow through the most permeable zones, thus increasing areal and vertical sweep efficiencies.All three classes of surfactants (anionic, cationic, and nonionic) were found to be stable under conditions encountered during a CO2 flood in limestone formation; however, only a few surfactants had proper adsorption and emulsifying properties. proper adsorption and emulsifying properties. Surfactant generated foams or emulsions with CO2 at reservoir conditions (1,000 to 3,000 psi and 135 degrees F) dramatically reduced CO2 flow through sandstone and carbonate cores. Surfactant reduced the amount of CO2 used to recover a given volume of oil, especially from watered-out cores. The mechanism of tertiary oil production from linear cores appears to be limited to CO2 extraction. Approximately the same oil recovery was obtained either by continuous CO2 injection after a surfactant slug or by alternate slugs of CO2 and surfactant solution. It was found that oil recovery efficiency increased when surfactant was used with CO2 and that efficiency increased with flooding pressure.One anionic surfactant was found to be superior for this purpose. This surfactant emulsified CO2 well, was least adsorbed on carbonate rocks, and greatly reduced CO2 mobility in linear cores at concentrations of 0.1 to 1 %.The study indicates that effectiveness of CO2 miscible flooding can be increased by alternate injection of CO2 and aqueous surfactant slugs into the reservoir. Introduction The basic principles of CO2 flooding have been studied for the past 25 years by many investigators. Numerous laboratory studies have demonstrated that CO2, at elevated pressures, can recover oil unrecoverable by conventional methods and that super-critical CO2 develops multicontact miscibility with many crude oils, with a very efficient oil displacement, approaching 100% of the contacted oil. Generally, oil recoveries with CO2 have been much higher in the laboratory than in the field because field conditions are more severe for all oil recovery processes.A principal problem in CO2 flooding is the low viscosity of CO2 compared with that of crude oil. At reservoir conditions, CO2 viscosity is often 10 to 50 times lower than oil viscosity. At these unfavorable viscosity (mobility) ratios, CO2 has a great potential to channel through the oil. potential to channel through the oil. SPEJ P. 281


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Renyi Cao ◽  
Changwei Sun ◽  
Y. Zee Ma

Surface property of rock affects oil recovery during water flooding. Oil-wet polar substances adsorbed on the surface of the rock will gradually be desorbed during water flooding, and original reservoir wettability will change towards water-wet, and the change will reduce the residual oil saturation and improve the oil displacement efficiency. However there is a lack of an accurate description of wettability alternation model during long-term water flooding and it will lead to difficulties in history match and unreliable forecasts using reservoir simulators. This paper summarizes the mechanism of wettability variation and characterizes the adsorption of polar substance during long-term water flooding from injecting water or aquifer and relates the residual oil saturation and relative permeability to the polar substance adsorbed on clay and pore volumes of flooding water. A mathematical model is presented to simulate the long-term water flooding and the model is validated with experimental results. The simulation results of long-term water flooding are also discussed.


1982 ◽  
Vol 22 (05) ◽  
pp. 722-730 ◽  
Author(s):  
L.L. Handy ◽  
J.O. Amaefule ◽  
V.M. Ziegler ◽  
I. Ershaghi

Abstract The thermal stabilities of several sulfonate surfactantsand one nonionic surfactant have been evaluated. Thedecomposition reactions have been observed to followfirst-order kinetics. Consequently, a quantitativemeasure of a surfactant's stability at a given temperatureis its half-life. Furthermore, the activation energy can beestimated from rate data obtained at two or moretemperatures. This permits limited extrapolation of theobserved decomposition rates to lower temperatures forwhich the rates are too low for convenient measurement.The surfactants we investigated are being considered forsteamflood additives and need to be relatively stable atsteam temperatures.None of the surfactants evaluated to date has therequisite stability for use in steamfloods. The most stablepetroleum sulfonate we have investigated has a half-lifeof 11 days at 180 degrees C (356 degrees F). With this half-life, substantial overdosing would be required tomaintain the minimum effective surfactant concentration forthe life of the flood. On the other hand, the estimatedhalflife for this surfactant at 93 degrees C (200 degrees F), calculated by extrapolation, would be 33 years.Tests with the nonionic surfactant, nonylphenoxy-polyethanol, have shown this material to have a very short half-life at steam temperatures, but it doesappear to be more stable at concentrations greater than thecritical micelle concentration(CMC). In limited tests, the sulfonates showed increased stability in the presenceof a 2-M salt solution. Introduction Several chemical additives are being considered for usewith steamfloods to reduce the producing steam/oilratios and to increase oil recovery from steam projects.The emphasis to date has been on inorganic chemicaladditives. Sodium hydroxide has been used in the fieldwithout success. We have been investigating thepotential benefits of using organic surfactants. This hasbeen discusssed recently by Brown et al. and byGopalakrishnan et al. The surfactant would be introducedinto the reservoir along, with the steam at the beginning ofthe steamflood and, possibly, intermittently during the floodprocess. The surfactant would be injected in diluteconcentrations and would be expected to travel in thatportion of the reservoir being flooded by hot water.Although the residual oil saturation in the steam zone has been observed to be very low, residual saturation in thehot water portion of the steamflood is expected to be thenormal waterflood residual. A surfactant in the hot watermay reduce this residual oil saturation. A synergistic effect could be observed between the surfactant and thetemperature to give better performance than would beobserved for a surfactant flood at normal reservoirtemperatures.For the process to work as anticipated, the surfactantmust move in the heated portion of the reservoir, and it must be sufficiently stable at elevated temperatures tofunction as an effective recovery agent for the life of theflood. Therefore, two aspects of the process are beingstudied simultaneously. One of these is the effect oftemperature on adsorption of the surfactants, and theother is the effect of heat on the stability of thesurfactants. The effect of temperature on adsorption will bediscussed in a later paper. The objective of this paper isto discuss the experimental evaluation of the thermalstability of some surfactant types that could haveapplication in reservoir floods. The effect of temperatureon adsorption and stability of these surfactants also willbe important in micellar floods at higher reservoirtemperatures. Experimental Procedures Several anionic and noninoic surfactants were selectedfor evaluation. SPEJ P. 722^


Sign in / Sign up

Export Citation Format

Share Document