A Microvisual Study of the Displacement of Viscous Oil by Polymer Solutions

2011 ◽  
Vol 14 (03) ◽  
pp. 269-280 ◽  
Author(s):  
M.. Buchgraber ◽  
T.. Clemens ◽  
L. M. Castanier ◽  
A. R. Kovscek

Summary Of the various enhanced-oil-recovery (EOR) polymer formulations, newly developed associative polymers show special promise. We investigate pore and pore-network scales because polymer solutions ultimately flow through the pore space of rock to displace oil. We conduct and monitor optically water/oil and polymer-solution/oil displacements in a 2D etched-silicon micromodel. The micromodel has the geometrical and topological characteristics of sandstone. Conventional hydrolyzed-polyacrylamide solutions and newly developed associative-polymer solutions with concentrations ranging from 500 to 2,500 ppm were tested. The crude oil had a viscosity of 450 cp at test conditions. Our results provide new insight regarding the ability of polymer to stabilize multiphase flow. At zero and low polymer concentrations, relatively long and wide fingers of injectant developed, leading to early water break-through and low recoveries. At increased polymer concentration, a much greater number of relatively fine fingers formed. The width-to-length ratio of these fingers was quite small, and the absolute length of fingers decreased. At a larger scale of observation, the displacement front appears to be stabilized; hence, recovery efficiency improved remarkably. Above a concentration of 1,500 ppm, plugging of the micromodel by polymer and lower oil recovery was observed for both polymer types. For tertiary polymer injection that begins at breakthrough of water, the severe fingers resulting from water injection are modified significantly. Fingers become wider and grow in the direction normal to flow as polymer solution replaces water. Apparently, improved sweep efficiency of viscous oils is possible (at this scale of investigation) even after waterflooding. The associative- and conventional-polymer solutions improved oil recovery by approximately the same amount. The associative polymers, however, showed more-stable displacement fronts in comparison to conventional-polymer solutions.

1975 ◽  
Vol 15 (04) ◽  
pp. 338-346 ◽  
Author(s):  
M.T. Szabo

Abstract Numerous polymer floods were performed in unconsolidated sand packs using a C14-tagged, cross-linked, partially hydrolyzed ployacrylamide, and the data are compared with brine-flood performance in the same sands. performance in the same sands. The amount of "polymer oil" was linearly proportional to polymer concentration up to a proportional to polymer concentration up to a limiting value. The upper limit of polymer concentration yielding additional polymer oil was considerably higher for a high-permeability sand than for a low-permeability sand. It is shown that a minimum polymer concentration exists, below which no appreciable polymer oil can be produced in high-permeability sands. The effect of polymer slug size on oil recovery is shown for various polymer concentrations, and the results from these tests are used to determine the optimum slug size and polymer concentration for different sands. The effect of salinity was studied by using brine and tap water during polymer floods under similar conditions. Decreased salinity resulted in improved oil recovery at low, polymer concentrations, but it had little effect at higher polymer concentrations. Polymer injection that was started at an advanced stage of brine flood also improved the oil recovery in single-layered sand packs. Experimental data are presented showing the effect of polymer concentration and salinity on polymer-flood performance in stratified reservoir polymer-flood performance in stratified reservoir models. Polymer concentrations in the produced water were measured by analyzing the radioactivity of effluent samples, and the amounts of retained polymer in the stratified models are given for each polymer in the stratified models are given for each experiment. Introduction In the early 1960's, a new technique using dilute polymer solutions to increase oil recovery was polymer solutions to increase oil recovery was introduced in secondary oil-recovery operations. Since then, this new technique has attained wide-spread commercial application. The success and the complexity of this new technology has induced many authors to investigate many aspects of this flooding technique. Laboratory and field studies, along with numerical simulation of polymer flooding, clearly demonstrated that polymer additives increase oil recovery. polymer additives increase oil recovery. Some of the laboratory results have shown that applying polymers in waterflooding reduces the residual oil saturation through an improvement in microscopic sweep efficiency. Other laboratory studies have shown that applying polymer solutions improves the sweep efficiency in polymer solutions improves the sweep efficiency in heterogeneous systems. Numerical simulation of polymer flooding, and a summary of 56 field applications, clearly showed that polymer injection initiated at an early stage of waterflooding is more efficient than when initiated at an advanced stage. Although much useful information has been presented, the experimental conditions were so presented, the experimental conditions were so variable that difficulties arose in correlating the numerical data. So, despite this good data, a systematic laboratory study of the factors influencing the performance of polymer flooding was still lacking in the literature. The purpose of this study was to investigate the effect of polymer concentration, polymer slug size, salinity in the polymer bank, initial water saturation, and permeability on the performance of polymer floods. The role of oil viscosity did not constitute a subject of this investigation. However, some of the data indicated that the applied polymer resulted in added recovery when displacing more viscous oil. The linear polymer-flood tests were coupled with tests in stratified systems, consisting of the same sand materials used in linear flood tests. Thus, it was possible to differentiate between the role of polymer in mobility control behind the flood front in each layer and its role in mobility control in the entire stratified system through improvement in vertical sweep efficiency. A radioactive, C14-tagged hydrolyzed polyacrylamide was used in all oil-recovery tests. polyacrylamide was used in all oil-recovery tests. SPEJ P. 338


2021 ◽  
Author(s):  
Taniya Kar ◽  
Abbas Firoozabadi

Abstract Improved oil recovery in carbonate rocks through modified injection brine has been investigated extensively in recent years. Examples include low salinity waterflooding and surfactant injection for the purpose of residual oil reduction. Polymer addition to injection water for improvement of sweep efficiency enjoys field success. The effect of low salinity waterflooding is often marginal and it may even decrease recovery compared to seawater flooding. Polymer and surfactant injection are often effective (except at very high salinities and temperatures) but concentrations in the range of 5000 to 10000 ppm may make the processes expensive. We have recently suggested the idea of ultra-low concentration of surfactants at 100 ppm to decrease residual oil saturation from increased brine-oil interfacial elasticity. In this work, we investigate the synergistic effects of polymer injection for sweep efficiency and the surfactant for interfacial elasticity modification. The combined formulation achieves both sweep efficiency and residual oil reduction. A series of coreflood tests is performed on a carbonate rock using three crude oils and various injection brines: seawater and formation water with added surfactant and polymer. Both the surfactant and polymer are found to improve recovery at breakthrough via increase in oil-brine interfacial elasticity and injection brine viscosification, respectively. The synergy of surfactant and polymer mixed with seawater leads to higher viscosity and higher oil recovery. The overall oil recovery is found to be a strong function of oil-brine interfacial viscoelasticity with and without the surfactant and polymer in sea water and connate water injection.


2014 ◽  
Author(s):  
C.. Temizel ◽  
S.. Purwar ◽  
A.. Agarwal ◽  
A.. Abdullayev ◽  
K.. Urrutia ◽  
...  

Abstract Water alternating gas (WAG) injection has been widely used for the last 50 years throughout the world. The typical improved oil recovery (IOR) potential for WAG injection compared with water injection is 5 to 10%. It was originally intended to improve sweep efficiency during gas flooding, with intermittent slugs of water and gas designed to follow the same route through the reservoir. Mechanisms in WAG injection include microscopic effects, particularly in cases where three-phase flow and hysteresis are important for the IOR effect. Injection of gas usually aids an ongoing waterflood, and finding technical and commercial methods to reduce gas costs would be useful. Water injection alone tends to sweep the lower parts of a reservoir, while gas injected alone sweeps more of the upper parts of a reservoir because of gravitational forces. Gas represents a large fraction of the total cost, making WAG injection an expensive method. Thus, optimizing WAG injection is not only crucial in terms of recovery but also economics, especially where gas is expensive and/or limited. In this study, the significance of key components in a WAG injection process on SPE's 5th Comparative Solution Project (CSP) is presented that models the WAG process through a pseudo-miscible formulation by means of coupling a full-physics reservoir simulator with commercial optimization and uncertainty software. The results are analyzed and presented in a comparative manner by means of tornado charts showing the significance of each decision and uncertainty variable.


2009 ◽  
Vol 49 (1) ◽  
pp. 453
Author(s):  
Pavel Bedrikovetsky ◽  
Mohammad Afiq ab Wahab ◽  
Gladys Chang ◽  
Antonio Luiz Serra de Souza ◽  
Claudio Alves Furtado

Injectivity formation damage with water-flooding using sea/produced water has been widely reported in the North Sea, the Gulf of Mexico and the Campos Basin in Brazil. The damage is due to the capture of solid/liquid particles by the rock with consequent permeability decline; it is also due to the formation of a low permeable external filter cake. Yet, moderate injectivity decline is not too damaging with long horizontal injectors where the initial injectivity is high. In this case, injection of raw or poorly treated water would save money on water treatment, which is not only cumbersome but also an expensive procedure in offshore projects. In this paper we investigate the effects of injected water quality on waterflooding using horizontal wells. It was found that induced injectivity damage results in increased sweep efficiency. The explanation of the phenomenon is as follows: injectivity rate is distributed along a horizontal well non-uniformly; water advances faster from higher rate intervals resulting in early breakthrough; the retained particles plug mostly the high permeability channels and homogenise the injectivity profile along the well. An analytical model for injectivity decline accounting for particle capture and a low permeable external filter cake formation has been implemented into the Eclipse 100 reservoir simulator. It is shown that sweep efficiency in a heterogeneous formation can increase by up to 5% after one pore volume injected, compared to clean water injection.


2014 ◽  
Vol 695 ◽  
pp. 499-502 ◽  
Author(s):  
Mohamad Faizul Mat Ali ◽  
Radzuan Junin ◽  
Nor Hidayah Md Aziz ◽  
Adibah Salleh

Malaysia oilfield especially in Malay basin has currently show sign of maturity phase which involving high water-cut and also pressure declining. In recent event, Malaysia through Petroliam Nasional Berhad (PETRONAS) will be first implemented an enhanced oil recovery (EOR) project at the Tapis oilfield and is scheduled to start operations in 2014. In this project, techniques utilizing water-alternating-gas (WAG) injection which is a type of gas flooding method in EOR are expected to improve oil recovery to the field. However, application of gas flooding in EOR process has a few flaws which including poor sweep efficiency due to high mobility ratio of oil and gas that promotes an early breakthrough. Therefore, a concept of carbonated water injection (CWI) in which utilizing CO2, has ability to dissolve in water prior to injection was applied. This study is carried out to assess the suitability of CWI to be implemented in improving oil recovery in simulated sandstone reservoir. A series of displacement test to investigate the range of recovery improvement at different CO2 concentrations was carried out with different recovery mode stages. Wettability alteration properties of CWI also become one of the focuses of the study. The outcome of this study has shown a promising result in recovered residual oil by alternating the wettability characteristic of porous media becomes more water-wet.


SPE Journal ◽  
2010 ◽  
Vol 16 (01) ◽  
pp. 43-54 ◽  
Author(s):  
Guillaume Dupuis ◽  
David Rousseau ◽  
René Tabary ◽  
Bruno Grassl

Summary The specific molecular structure of hydrophobically modified water-soluble polymers (HMWSPs), also called hydrophobically associative polymers, gives them interesting thickening and surface-adsorption abilities compared with classical water-soluble polymers (WSPs), which could be useful in polymer-flooding and well-treatment operations. However, their strong adsorption obviously can impair their injectivity, and, conversely, the shear sensitivity of their gels can be detrimental to well treatments. Determining for which improved-oil-recovery (IOR) application HMWSPs are best suited, therefore, remains difficult. The aim of this work is to bring new insight regarding the interaction mechanisms between HMWSPs and rock matrix and the consequences concerning their propagation in reservoirs. A consistent set of HMWSPs with sulfonated polyacrylamide backbones and alkyl hydrophobic side chains together with an equivalent WSP was synthesized and fully characterized. HMWSP and WSP solutions were then injected in model granular packs. As expected, with HMWSPs, high resistance factors (or mobility reductions, Rm) were observed. Yet, within the limit of the injected volumes, the effluent showed the same viscosity and polymer concentration as the injected solutions. A first significant outcome concerns the specificities of the Rm curves during HMWSP injections. Rm increases took place in two steps. The first corresponded to the propagation of the viscous front, as observed with WSP, whereas the second was markedly delayed, occurring several pore volumes (PV) after the breakthrough. This result is not compatible with the classical picture of multilayer adsorption of HMWSPs but suggests that injectivity is controlled solely by the adsorption of minor polymeric species. This hypothesis was confirmed by reinjecting the collected effluents into fresh cores; no second-step Rm increases were observed. Brine injections in HMWSP-treated cores revealed high residual resistance factors (or irreversible permeability reductions, Rk), which can be attributed to the presence of thick polymer-adsorbed layers on the pore surface. Nevertheless, Rk values strongly decreased when increasing the brine-flow rate. This second significant outcome shows that the adsorbed-layer thickness is shear-controlled. These new results should lead to proposing new adapted filtration and injection procedures for HMWSPs, aimed, in particular, at improving their injectivity.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Pan-Sang Kang ◽  
Jong-Se Lim ◽  
Chun Huh

Abstract The viscosity of injection fluid is a critical parameter that should be considered for the design and evaluation of polymer flood, which is an effective and popular technique for enhanced oil recovery (EOR). It is known that the shear-thinning behavior of EOR polymer solutions is affected by temperature. In this study, temperature dependence (25–70 °C) of the viscosity of a partially hydrolyzed polyacrylamide solution, the most widely used EOR polymer for oil field applications, was measured under varying conditions of the polymer solution (polymer concentration: 500–3000 ppm, NaCl salinity: 1000–10,000 ppm). Under all conditions of the polymer solution, it was observed that the viscosity decreases with increasing temperature. The degree of temperature dependence, however, varies with the conditions of the polymer solution. Martin model and Lee correlations were used to estimate the dependence of the viscosity of the polymer solution on the polymer concentration and salinity. In this study, we proposed a new empirical model to better elucidate the temperature dependence of intrinsic viscosity. Analysis of the measured viscosities shows that the accuracy of the proposed temperature model is higher than that of the existing temperature model.


Sign in / Sign up

Export Citation Format

Share Document