First Campos Basin Raw-Water-Injection Well: Sand Control and Stimulation

2010 ◽  
Author(s):  
Carlos Alberto Pedroso ◽  
Nilson Jose Denadai ◽  
Eduardo Lopes Duarte
2021 ◽  
Author(s):  
Thanudcha Khunmek ◽  
Keith Parrott ◽  
Ahamad Faidzal Bin Rosli

Abstract The completion of a highly deviated well involves overcoming significant deployment challenges during the drilling operations that require precise and effective conveyance and intervention. The conventional slickline intervention is unsuitable for wells with more than 60° deviation. The operator has sought to implement efficient, reliable and cost-effective deployment methods in delivering injector well. Thus, the operator decided on the e-line tubing tractor conveyed with e-line key and an e-line stroking tool. A tubing tractor and mechanical key and stroker were used to convey the wireline key in highly deviated wells. The key and stroker tools are latched into the sliding side doors (SSDs). They will activate open or close SSDs by down-strokes or up-strokes. In particular, the SSDs are closed when it is required to pressure up the tubing to set the packers. After the packers are set, an integrity test is conducted to confirm zonal isolation. Finally, the SSD is shifted open by the tubing tractor and a low rate injection test is performed to confirm the status of the SSD before handover the well. The operation had successfully installed multiple zones injection completions (MZC) in a highly deviated well and complemented the new completion design for the sand control in water injection well. The e-line tubing tractor and well key/stroker tools have met all operational and budgetary expectations. The traditional intervention methods in highly deviated wells, such as coil tubing, can be costly and potentially infeasible due to a footprint constraint on the drilling rig. The completion was successfully installed without any HSSE issues and the lesson learnt was recorded for future interventions when a change of injection zones is required. For a water injector completion design, equipment was selected based on reservoir requirements i.e. sand control, injection rates and pressure, etc. The goal was to prevent sand from flowing into the tubing when water injection is temporarily paused. To address this concern, the team designed and implemented a cost- effective Autonomous Inflow Control Device (AICD) with bypass valves equipped with SSDs for injection zone selectivity. This first well has been on injection for more than two years with no sand observed in the tubing or declines in the injection rate. The e-line tubing tractor and well key/stroker tools enabled the success of this operations and should be an option for completions in highly deviated wells. Additionally, this is the first time an AICD with bypass valves has been installed for a water injection well in the Gulf of Thailand. The success achieved with this operation in the Nong Yao field provides operators with a new solution for dealing with the water injection in the unconsolidated reservoirs.


2021 ◽  
Vol 73 (06) ◽  
pp. 38-40
Author(s):  
Mojtaba Moradi

As production declines over time, the injection of fluids is required to enhance oil recovery and/or maintain the reservoir pressure. Whether applied at field startup or as a secondary recovery technique, waterflooding can boost oil recovery from less than 30% to 30–50%. The common problems associated with waterflooding include loss of injectivity, premature injector failure, and injection conformance. This can also lead to issues around insufficient voidage replacement, which can result in lower reservoir pressure and the production of fluid with a higher gas/oil ratio. In total field recovery, this ultimately means lower production and oil left untapped in the well. To remediate the issue of conformance, costly and often complex interventions and redrills were traditionally used to restore water-injection capability. Also, passive outflow-control devices have been used successfully to somewhat improve the fluid conformance from injection wells. However, they may fail in reservoirs with complex/dynamic properties including propagating/dilating fractures. Advanced Wells in Injection Wells There are a number of considerations when planning a water-injection completion, particularly around both the rock and fluid properties, as well as the credible risks that could occur, namely: - Uneven displacement of hydrocarbon - Fracture growth short-circuiting injectant-proximal wells - Fracture growth breaching caprock/basement seal - Crossflow, plugging, and solids fill Advanced completion options include deploying passive flow-control devices. For example, inflow-control devices (ICDs) are unable to react to dynamic changes in reservoir/well properties. This often requires production-logging-tool (PLT) logs, distributed temperature sensors, and/or tracers to be run and, if available, to apply the sleeve option. Alternatively, active (intelligent) completions, such as inflow-control valves, can be used, but they tend to be expensive and complicated and are limited to the number of zones. This technique also requires frequent analysis of data from the well to perform such actions. Tendeka, a global specialist in advanced completions, production solutions, and sand control, has developed FloFuse, a new and exclusively autonomous rate-limiting outflow-control device (AOCD) (Fig. 1). Using the analogy and inspiration of a home fuse box, which contains many individual fuses to control various parts of a building, the AOCD can control the excessive rate that passes through a specific section of a well, causing tripping once the threshold is reached. By almost shutting, i.e., significantly choking, the injection fluid into the fractures crossing the well, the AOCD autonomously prevents growth and excessive fluid injection into the thief/fracture zones and maintains a balanced or prescribed injection distribution. Like other flow-control valves, this device should be installed in several compartments in the injection well. Initially, devices operate as normal passive outflow control, but if the injected flow rate through the valve exceeds a designed limit, the device will automatically shut off. This allows the denied fluid to that specific compartment to be distributed among the neighboring compartments.


2013 ◽  
Vol 807-809 ◽  
pp. 2508-2513
Author(s):  
Qiang Wang ◽  
Wan Long Huang ◽  
Hai Min Xu

In pressure drop well test of the clasolite water injection well of Tahe oilfield, through nonlinear automatic fitting method in the multi-complex reservoir mode for water injection wells, we got layer permeability, skin factor, well bore storage coefficient and flood front radius, and then we calculated the residual oil saturation distribution. Through the examples of the four wells of Tahe oilfield analyzed by our software, we found that the method is one of the most powerful analysis tools.


2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2021 ◽  
Author(s):  
Muhammad Amin Rois ◽  
Willy Dharmawan

Abstract Banyu Urip reservoir management heavily rely on river-sourced water as water injection to meet Voidage Replacement Ratio target of 1. The treatment facility which consist of Raw Water Basin, Clarifiers, Multi Media Fine (MMF) Filters and Cartridge Filters, is sensitive to seasonal transition and river condition. This paper shares lesson learnt in operating such facility and troubleshooting guidance to overcome challenges of high turbidity during rainy season and lack of river water volume during drought season. To maintain the design intent of Banyu Urip (BU) water treatment facility in achieving water injection quality and quantity at reasonable cost, following activities were undertaken: [1] Critical water parameters data gathering & analysis across each unit; [2] Clarifier Chemical injection dosage verification based on laboratory test; [3] MMF Media coring inspection to assess the filtering media condition; [4] MMF Filters backwash parameters optimization; [5] MMF Filter on-off valve sequencing optimization to address water hammering issue; [6] Water injection rate management to deal with river water source availability along the year. Critical water parameters analysis revealed that chemical dosages were in-adequate to treat the five times higher turbidity coming into Clarifiers during early rain 2019. On top of this, low Raw Water Basin level at the end of long drought further contributed to jeopardize Clarifier's operation. Although in-adequate chemicals injection was resolved at early 2020, the treatment cost remained high, especially on filtration section. Media coring result on MMF Filters confirmed that the filtering media have been poisoned by carried-over mud from Clarifiers during upset. The operation of MMF Filters required extensive optimization on backwash parameters to successfully recover the MMF Filters performance without media replacement. Latest media coring on the worst MMF Filter showed that there was no more top mud layer and the amount of trapped mud had been decreased significantly. Cartridge Filter replacement interval was improved from 38 hours to 186 hours, therefore water treatment cost dropped with quite significant margin. Additionally, the availability of each MMF Filters was also improved. At the same time, the high water injection rate during 2020 rainy season, had successfully increased reservoir pressure buffer up to its maximum point as the anticipation of prolonged drought season. This paper provides the troubleshooting guidance for MMF Filter application in season-prone water treatment facility including insights on interpretation of media coring result and linking it back to optimization strategy on the MMF Filters drain down time for effective backwash process without having excessive media loss.


2021 ◽  
Author(s):  
Nasser M. Al-Hajri ◽  
Akram R. Barghouti ◽  
Sulaiman T. Ureiga

Abstract This paper will present an alternative calculation technique to predict wellbore crossflow rate in a water injection well resulting from a casing leak. The method provides a self-governing process for wellbore related calculations inspired by the fourth industrial revolution technologies. In an earlier work, calculations techniques were presented which do not require the conventional use of downhole flowmeter (spinner) to obtain the flow rate. Rather, continuous surface injection data prior to crossflow development and shut-in well are used to estimate the rate. In this alternative methodology, surface injection data post crossflow development are factored in to calculate the rate with the same accuracy. To illustrate the process an example water injector well is used. To quantify the casing leak crossflow rate, the following calculation methodology was applied:Generate a well performance model using pre-crossflow injection data. Normal modeling techniques are applied in this step to obtain an accurate model for the injection well as a baseline case.Generate an imaginary injection well model: An injection well mimicking the flow characteristics and properties of the water injector is envisioned to simulate crossflow at flowing (injecting) conditions. In this step, we simulate an injector that has total depth up to the crossflow location only and not the total depth of the example water well.Generate the performance model for the secondary formation using post crossflow data: The total injection rate measured at surface has two portions: one portion goes into the shallower secondary formation and another goes into the deeper (primary) formation. The modeling inputs from the first two steps will be used here to obtain the rate for the downhole formation at crossflow conditions.Generate an imaginary production well model: The normal model for the water injector will be inversed to obtain a production model instead. The inputs from previous steps will be incorporated in the inverse modeling.Obtaining the crossflow rate at shut-in conditions: Performance curves generated from step 3 & 4 will be plotted together to obtain an intersection that corresponds to the crossflow rate at shut-in conditions. This numerical methodology was analytically derived and the prediction results were verified on syntactic field data with very high accuracy. The application of this model will benefit oil operators by avoiding wireline logging costs and associated safety risks with mechanical intervention.


2021 ◽  
Vol 61 (2) ◽  
pp. 530
Author(s):  
Paul Barraclough ◽  
Mohamad Bagheri ◽  
Charles Jenkins ◽  
Roman Pevzner ◽  
Simon Hann ◽  
...  

In 2015, CO2CRC Ltd embarked on an ambitious plan to field test innovative technologies to monitor a CO2 plume injected into a saline aquifer with a view to address many of the economic and environmental concerns frequently associated with commercial carbon capture and storage project’s long-term monitoring programs (Jenkins et al. 2017). It was called the Otway Stage 3 Project and it was focused on testing the technologies of seismic and downhole pressures applied in unique ways to monitor an injected plume of approximately 15000 tonnes as it developed and migrated in the subsurface. To achieve this goal, five new wells were drilled at CO2CRC’s Otway International Test Centre – one dedicated to injection (drilled in 2017) and the remaining four wells (drilled in 2019) were used for monitoring purposes. Each monitoring well and the gas injection well, were outfitted with fibre optic systems installed and cemented outside the casing (specifically for seismic monitoring) and with pressure gauges installed at the reservoir depth. The challenge of the installation was to install fibre optics outside of the casing, cement them in place securely and to perforate the wells without damaging the fragile TEF bundles. While the installation of the pressure gauges in the injection well was a conventional in-tubing gauge mandrel, the installation in the monitoring wells, which were to be used for water injection as well as pressure monitoring, used a less conventional deployment method, where the gauges were instead installed using a more economic and flexible approach by suspending the gauges from the wellhead via a hanger system. This not only ensured continuous offline monitoring of the downhole well pressures and temperatures, but also facilitated future well operations by simple wireline retrieval and deployment of the gauge, forgoing the need for a workover rig. The various systems were commissioned over the period of March–June 2020 and were in full operation in the second half of 2020 – all successfully operating and acquiring baseline data remotely as designed. The Stage 3 Project commenced gas injection operations in December 2020 and data acquisition using the innovative systems have commenced successfully.


Sign in / Sign up

Export Citation Format

Share Document